Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 39332 by abdo mathsup 649 cc last updated on 05/Jul/18

1) simplify S_n (x)=Σ_(k=1) ^n  sin^2 (kx)  2)simplify  A_n =Σ_(k=1) ^n  sin^2 (((kπ)/n))

1)simplifySn(x)=k=1nsin2(kx)2)simplifyAn=k=1nsin2(kπn)

Commented by math khazana by abdo last updated on 09/Jul/18

1) we have S_n (x)=Σ_(k=0) ^n   ((1−cos(2kx))/2)  = ((n+1)/2) −(1/2) Σ_(k=0) ^n  cos(2kx) but  Σ_(k=0) ^n  cos(2kx) = Re(Σ_(k=0) ^n  e^(i2kx) )  Σ_(k=0) ^n  e^(i2kx)  =Σ_(k=0) ^n  (e^(i2x) )^k  = ((1− e^(i2(n+1)x) )/(1−e^(i2x) ))  =((1 −cos2(n+1)x −i sin2(n+1)x)/(1−cos(2x)−i sin(2x)))  = ((2sin^2 (n+1)x −2i sin(n+1)x cos(n+1)x)/(2sin^2 x −2i sinx cosx))  =((−isin(n+1)x{cos(n+1)x +isin(n+1)x})/(−isinx{cosx +isinx}))  =((sin(n+1)x)/(sinx)) e^(i(n+1)x)  e^(−ix)   = ((sin(n+1)x)/(sinx)) {cos(nx) +i sinx} ⇒  Σ_(k=0) ^n  cos(2kx) = ((sin(n+1)x)/(sinx)) cos(nx) ⇒  S_n (x) =((n+1)/2) −((sin(n+1)x cos(nx))/(2sinx)) .  2) A_n =S_n ((π/n)) =((n+1)/2) −((sin(n+1)(π/n) cos(n(π/n)))/(2sin((π/n))))  =((n+1)/2) + ((sin(π +(π/n)))/(2sin((π/n)))) =((n+1)/2) +((−sin((π/n)))/(2sin((π/n))))  =((n+1)/2) −(1/2)  = (n/2) ⇒  A_n = (n/2) .

1)wehaveSn(x)=k=0n1cos(2kx)2=n+1212k=0ncos(2kx)butk=0ncos(2kx)=Re(k=0nei2kx)k=0nei2kx=k=0n(ei2x)k=1ei2(n+1)x1ei2x=1cos2(n+1)xisin2(n+1)x1cos(2x)isin(2x)=2sin2(n+1)x2isin(n+1)xcos(n+1)x2sin2x2isinxcosx=isin(n+1)x{cos(n+1)x+isin(n+1)x}isinx{cosx+isinx}=sin(n+1)xsinxei(n+1)xeix=sin(n+1)xsinx{cos(nx)+isinx}k=0ncos(2kx)=sin(n+1)xsinxcos(nx)Sn(x)=n+12sin(n+1)xcos(nx)2sinx.2)An=Sn(πn)=n+12sin(n+1)πncos(nπn)2sin(πn)=n+12+sin(π+πn)2sin(πn)=n+12+sin(πn)2sin(πn)=n+1212=n2An=n2.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com