Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 39338 by rahul 19 last updated on 05/Jul/18

If f(x) = ∫_0 ^4  e^(∣t−x∣)  dt    (0≤x≤4),  maximum value of f(x) is = ?

$$\mathrm{If}\:\mathrm{f}\left({x}\right)\:=\:\int_{\mathrm{0}} ^{\mathrm{4}} \:\mathrm{e}^{\mid\mathrm{t}−{x}\mid} \:\mathrm{dt}\:\:\:\:\left(\mathrm{0}\leqslant{x}\leqslant\mathrm{4}\right), \\ $$$$\mathrm{maximum}\:\mathrm{value}\:\mathrm{of}\:\mathrm{f}\left({x}\right)\:\mathrm{is}\:=\:? \\ $$

Commented by math khazana by abdo last updated on 06/Jul/18

we have f(x)= ∫_0 ^x  e^(x−t∣) dt +∫_x ^4  e^(t−x)  dt  =e^x   [ −e^(−t) ]_0 ^x   +e^(−x)  [ e^t ]_x ^4   =e^x (1−e^(−x) ) +e^(−x) ( e^4  −e^x )  =e^x  −1 +e^4  e^(−x)  −1 =e^x  +e^4  e^(−x)  −2  f^′ (x)= e^x  −e^4  e^(−x)  =e^x (1−e^4  e^(−2x) )so  f^′ (x)=0 ⇔ 1−e^4  e^(−2x) =0⇔e^(−2x)  = e^(−4)  ⇔x=2  f^′ (x)≥0 ⇔ 1−e^4  e^(−2x) ≥0 ⇔e^4  e^(−2x)  ≤1 ⇔  e^(−2x) ≤ e^(−4)   ⇔ −2x≤−4 ⇔ x≥2  so f is  increazing on [2,4] decreasing on [0,2]⇒  max f(x)=f(0) or f(4) but  f(0)=e^4  −1  and f(4) =e^4  −1 =f(0) ⇒  max f(x)=f(0)=e^4  −1

$${we}\:{have}\:{f}\left({x}\right)=\:\int_{\mathrm{0}} ^{{x}} \:{e}^{{x}−{t}\mid} {dt}\:+\int_{{x}} ^{\mathrm{4}} \:{e}^{{t}−{x}} \:{dt} \\ $$$$={e}^{{x}} \:\:\left[\:−{e}^{−{t}} \right]_{\mathrm{0}} ^{{x}} \:\:+{e}^{−{x}} \:\left[\:{e}^{{t}} \right]_{{x}} ^{\mathrm{4}} \\ $$$$={e}^{{x}} \left(\mathrm{1}−{e}^{−{x}} \right)\:+{e}^{−{x}} \left(\:{e}^{\mathrm{4}} \:−{e}^{{x}} \right) \\ $$$$={e}^{{x}} \:−\mathrm{1}\:+{e}^{\mathrm{4}} \:{e}^{−{x}} \:−\mathrm{1}\:={e}^{{x}} \:+{e}^{\mathrm{4}} \:{e}^{−{x}} \:−\mathrm{2} \\ $$$${f}^{'} \left({x}\right)=\:{e}^{{x}} \:−{e}^{\mathrm{4}} \:{e}^{−{x}} \:={e}^{{x}} \left(\mathrm{1}−{e}^{\mathrm{4}} \:{e}^{−\mathrm{2}{x}} \right){so} \\ $$$${f}^{'} \left({x}\right)=\mathrm{0}\:\Leftrightarrow\:\mathrm{1}−{e}^{\mathrm{4}} \:{e}^{−\mathrm{2}{x}} =\mathrm{0}\Leftrightarrow{e}^{−\mathrm{2}{x}} \:=\:{e}^{−\mathrm{4}} \:\Leftrightarrow{x}=\mathrm{2} \\ $$$${f}^{'} \left({x}\right)\geqslant\mathrm{0}\:\Leftrightarrow\:\mathrm{1}−{e}^{\mathrm{4}} \:{e}^{−\mathrm{2}{x}} \geqslant\mathrm{0}\:\Leftrightarrow{e}^{\mathrm{4}} \:{e}^{−\mathrm{2}{x}} \:\leqslant\mathrm{1}\:\Leftrightarrow \\ $$$${e}^{−\mathrm{2}{x}} \leqslant\:{e}^{−\mathrm{4}} \:\:\Leftrightarrow\:−\mathrm{2}{x}\leqslant−\mathrm{4}\:\Leftrightarrow\:{x}\geqslant\mathrm{2}\:\:{so}\:{f}\:{is} \\ $$$${increazing}\:{on}\:\left[\mathrm{2},\mathrm{4}\right]\:{decreasing}\:{on}\:\left[\mathrm{0},\mathrm{2}\right]\Rightarrow \\ $$$${max}\:{f}\left({x}\right)={f}\left(\mathrm{0}\right)\:{or}\:{f}\left(\mathrm{4}\right)\:{but} \\ $$$${f}\left(\mathrm{0}\right)={e}^{\mathrm{4}} \:−\mathrm{1}\:\:{and}\:{f}\left(\mathrm{4}\right)\:={e}^{\mathrm{4}} \:−\mathrm{1}\:={f}\left(\mathrm{0}\right)\:\Rightarrow \\ $$$${max}\:{f}\left({x}\right)={f}\left(\mathrm{0}\right)={e}^{\mathrm{4}} \:−\mathrm{1} \\ $$

Commented by rahul 19 last updated on 05/Jul/18

prof ans is (e⁴ - 1 )

Answered by ajfour last updated on 05/Jul/18

f(x)∣_(max) =∫_0 ^(  4) e^t dt  = e^4 −1 .

$${f}\left({x}\right)\mid_{{max}} =\int_{\mathrm{0}} ^{\:\:\mathrm{4}} {e}^{{t}} {dt}\:\:=\:{e}^{\mathrm{4}} −\mathrm{1}\:. \\ $$

Commented by rahul 19 last updated on 05/Jul/18

Thank you sir .

Answered by MJS last updated on 06/Jul/18

(d/dx)[∫e^(∣t−x∣) dt]=−e^(∣t−x∣)  ⇒  ⇒ (d/dx)[∫_0 ^4 e^(∣t−x∣) dt]=−e^(∣4−x∣) +e^(∣x∣) =f′(x)  f′′(x)=sign(4−x)e^(∣4−x∣) +sign(x)e^(∣x∣)   f′(x)=0 ⇒ ∣x∣=∣4−x∣ ⇒ x=2  f′′(2)=2e^2 >0 ⇒ f(x) has an absolute minimum       at x=2 ⇒ maximum is at the borders of       given interval ⇒ max(f(x))=f(0)=f(4)=e^4 −1

$$\frac{{d}}{{dx}}\left[\int\mathrm{e}^{\mid{t}−{x}\mid} {dt}\right]=−\mathrm{e}^{\mid{t}−{x}\mid} \:\Rightarrow \\ $$$$\Rightarrow\:\frac{{d}}{{dx}}\left[\underset{\mathrm{0}} {\overset{\mathrm{4}} {\int}}\mathrm{e}^{\mid{t}−{x}\mid} {dt}\right]=−\mathrm{e}^{\mid\mathrm{4}−{x}\mid} +\mathrm{e}^{\mid{x}\mid} ={f}'\left({x}\right) \\ $$$${f}''\left({x}\right)=\mathrm{sign}\left(\mathrm{4}−{x}\right)\mathrm{e}^{\mid\mathrm{4}−{x}\mid} +\mathrm{sign}\left({x}\right)\mathrm{e}^{\mid{x}\mid} \\ $$$${f}'\left({x}\right)=\mathrm{0}\:\Rightarrow\:\mid{x}\mid=\mid\mathrm{4}−{x}\mid\:\Rightarrow\:{x}=\mathrm{2} \\ $$$${f}''\left(\mathrm{2}\right)=\mathrm{2e}^{\mathrm{2}} >\mathrm{0}\:\Rightarrow\:{f}\left({x}\right)\:\mathrm{has}\:\mathrm{an}\:\mathrm{absolute}\:\mathrm{minimum} \\ $$$$\:\:\:\:\:\mathrm{at}\:{x}=\mathrm{2}\:\Rightarrow\:\mathrm{maximum}\:\mathrm{is}\:\mathrm{at}\:\mathrm{the}\:\mathrm{borders}\:\mathrm{of} \\ $$$$\:\:\:\:\:\mathrm{given}\:\mathrm{interval}\:\Rightarrow\:\mathrm{max}\left({f}\left({x}\right)\right)={f}\left(\mathrm{0}\right)={f}\left(\mathrm{4}\right)=\mathrm{e}^{\mathrm{4}} −\mathrm{1}\: \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com