Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 39384 by rahul 19 last updated on 05/Jul/18

The values of a for which y= ax^2 +ax+(1/(24))  and x = ay^2 +ay+(1/(24)) touch each other  are  1) (2/3)                     2) (3/2)  3) ((13+(√(601)))/(12))       4) ((13−(√(601)))/(12)).

$$\mathrm{The}\:\mathrm{values}\:\mathrm{of}\:\mathrm{a}\:\mathrm{for}\:\mathrm{which}\:\mathrm{y}=\:\mathrm{a}{x}^{\mathrm{2}} +{ax}+\frac{\mathrm{1}}{\mathrm{24}} \\ $$$${and}\:{x}\:=\:{ay}^{\mathrm{2}} +{ay}+\frac{\mathrm{1}}{\mathrm{24}}\:{touch}\:{each}\:{other} \\ $$$${are} \\ $$$$\left.\mathrm{1}\left.\right)\:\frac{\mathrm{2}}{\mathrm{3}}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{2}\right)\:\frac{\mathrm{3}}{\mathrm{2}} \\ $$$$\left.\mathrm{3}\left.\right)\:\frac{\mathrm{13}+\sqrt{\mathrm{601}}}{\mathrm{12}}\:\:\:\:\:\:\:\mathrm{4}\right)\:\frac{\mathrm{13}−\sqrt{\mathrm{601}}}{\mathrm{12}}. \\ $$

Answered by ajfour last updated on 05/Jul/18

they will touch on y=x  So y=x will be tangent to both.  ⇒   x=ax^2 +ax+(1/(24))  has a double  root.  ⇒   6(a−1)^2 =a  ⇒    6a^2 −13a+6=0            a=((13±(√(169−144)))/(12)) = (3/2), (2/3) .

$${they}\:{will}\:{touch}\:{on}\:{y}={x} \\ $$$${So}\:{y}={x}\:{will}\:{be}\:{tangent}\:{to}\:{both}. \\ $$$$\Rightarrow\:\:\:{x}={ax}^{\mathrm{2}} +{ax}+\frac{\mathrm{1}}{\mathrm{24}}\:\:{has}\:{a}\:{double} \\ $$$${root}. \\ $$$$\Rightarrow\:\:\:\mathrm{6}\left({a}−\mathrm{1}\right)^{\mathrm{2}} ={a} \\ $$$$\Rightarrow\:\:\:\:\mathrm{6}{a}^{\mathrm{2}} −\mathrm{13}{a}+\mathrm{6}=\mathrm{0} \\ $$$$\:\:\:\:\:\:\:\:\:\:{a}=\frac{\mathrm{13}\pm\sqrt{\mathrm{169}−\mathrm{144}}}{\mathrm{12}}\:=\:\frac{\mathrm{3}}{\mathrm{2}},\:\frac{\mathrm{2}}{\mathrm{3}}\:. \\ $$

Commented by MJS last updated on 05/Jul/18

master you′ve been faster...

$$\mathrm{master}\:\mathrm{you}'\mathrm{ve}\:\mathrm{been}\:\mathrm{faster}... \\ $$

Commented by rahul 19 last updated on 06/Jul/18

Thank you sir!

Answered by MJS last updated on 05/Jul/18

“touching” means only 1 intersection point  f(x)=ax^2 +ax+(1/(24))  f^(−1) (x): x=ay^2 +ay+(1/(24))  so they must have the common tangent y=x  ax^2 +(a−1)x+(1/(24))=0 must have exactly 1 solution ⇒  ⇒ B^2 −4AC=0 ⇒ (a−1)^2 −(1/6)a=0  a^2 −((13)/6)a+1=0  o=((13)/(12))±(5/(12))  a_1 =(2/3); a_2 =(3/2)

$$``\mathrm{touching}''\:\mathrm{means}\:\mathrm{only}\:\mathrm{1}\:\mathrm{intersection}\:\mathrm{point} \\ $$$${f}\left({x}\right)={ax}^{\mathrm{2}} +{ax}+\frac{\mathrm{1}}{\mathrm{24}} \\ $$$${f}^{−\mathrm{1}} \left({x}\right):\:{x}={ay}^{\mathrm{2}} +{ay}+\frac{\mathrm{1}}{\mathrm{24}} \\ $$$$\mathrm{so}\:\mathrm{they}\:\mathrm{must}\:\mathrm{have}\:\mathrm{the}\:\mathrm{common}\:\mathrm{tangent}\:{y}={x} \\ $$$${ax}^{\mathrm{2}} +\left({a}−\mathrm{1}\right){x}+\frac{\mathrm{1}}{\mathrm{24}}=\mathrm{0}\:\mathrm{must}\:\mathrm{have}\:\mathrm{exactly}\:\mathrm{1}\:\mathrm{solution}\:\Rightarrow \\ $$$$\Rightarrow\:{B}^{\mathrm{2}} −\mathrm{4}{AC}=\mathrm{0}\:\Rightarrow\:\left({a}−\mathrm{1}\right)^{\mathrm{2}} −\frac{\mathrm{1}}{\mathrm{6}}{a}=\mathrm{0} \\ $$$${a}^{\mathrm{2}} −\frac{\mathrm{13}}{\mathrm{6}}{a}+\mathrm{1}=\mathrm{0} \\ $$$${o}=\frac{\mathrm{13}}{\mathrm{12}}\pm\frac{\mathrm{5}}{\mathrm{12}} \\ $$$${a}_{\mathrm{1}} =\frac{\mathrm{2}}{\mathrm{3}};\:{a}_{\mathrm{2}} =\frac{\mathrm{3}}{\mathrm{2}} \\ $$

Commented by rahul 19 last updated on 06/Jul/18

Thank you sir!

Terms of Service

Privacy Policy

Contact: info@tinkutara.com