Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 39402 by ajfour last updated on 06/Jul/18

Commented by ajfour last updated on 06/Jul/18

If the two marked angles are  equal,  find (r/R) .

$${If}\:{the}\:{two}\:{marked}\:{angles}\:{are} \\ $$$${equal},\:\:{find}\:\frac{{r}}{{R}}\:. \\ $$

Answered by MrW3 last updated on 07/Jul/18

Commented by ajfour last updated on 07/Jul/18

Thank you sir, it is with your  encouragement that i have  devised some geometry questions!

$${Thank}\:{you}\:{sir},\:{it}\:{is}\:{with}\:{your} \\ $$$${encouragement}\:{that}\:{i}\:{have} \\ $$$${devised}\:{some}\:{geometry}\:{questions}! \\ $$

Commented by MrW3 last updated on 07/Jul/18

let λ=(r/R)  OC=(√((R−r)^2 −r^2 ))  AC=AO+OC=R+(√((R−r)^2 −r^2 ))  tan (α/2)=((MC)/(AC))=(r/(R+(√((R−r)^2 −r^2 ))))=(r/(R+(√(R(R−2r)))))  ⇒tan (α/2)=(λ/(1+(√(1−2λ))))  ⇒α=2 tan^(−1) (λ/(1+(√(1−2λ))))    BC^2 =AC×(2R−AC)=[R+(√((R−r)^2 −r^2 ))][2R−R−(√((R−r)^2 −r^2 ))]  =[R+(√((R−r)^2 −r^2 ))][R−(√((R−r)^2 −r^2 ))]  =R^2 −(R−r)^2 +r^2   =2Rr  ⇒BC=(√(2Rr))  BM=BC+CM=(√(2Rr))+r  sin β=((ME)/(BM))=(r/(r+(√(2Rr))))  ⇒sin β=(λ/(λ+(√(2λ))))  ⇒β=sin^(−1) (λ/(λ+(√(2λ))))    so that α=β:  2 tan^(−1) (λ/(1+(√(1−2λ))))=sin^(−1) (λ/(λ+(√(2λ))))  ⇒λ=(r/R)≈0.2215

$${let}\:\lambda=\frac{{r}}{{R}} \\ $$$${OC}=\sqrt{\left({R}−{r}\right)^{\mathrm{2}} −{r}^{\mathrm{2}} } \\ $$$${AC}={AO}+{OC}={R}+\sqrt{\left({R}−{r}\right)^{\mathrm{2}} −{r}^{\mathrm{2}} } \\ $$$$\mathrm{tan}\:\frac{\alpha}{\mathrm{2}}=\frac{{MC}}{{AC}}=\frac{{r}}{{R}+\sqrt{\left({R}−{r}\right)^{\mathrm{2}} −{r}^{\mathrm{2}} }}=\frac{{r}}{{R}+\sqrt{{R}\left({R}−\mathrm{2}{r}\right)}} \\ $$$$\Rightarrow\mathrm{tan}\:\frac{\alpha}{\mathrm{2}}=\frac{\lambda}{\mathrm{1}+\sqrt{\mathrm{1}−\mathrm{2}\lambda}} \\ $$$$\Rightarrow\alpha=\mathrm{2}\:\mathrm{tan}^{−\mathrm{1}} \frac{\lambda}{\mathrm{1}+\sqrt{\mathrm{1}−\mathrm{2}\lambda}} \\ $$$$ \\ $$$${BC}^{\mathrm{2}} ={AC}×\left(\mathrm{2}{R}−{AC}\right)=\left[{R}+\sqrt{\left({R}−{r}\right)^{\mathrm{2}} −{r}^{\mathrm{2}} }\right]\left[\mathrm{2}{R}−{R}−\sqrt{\left({R}−{r}\right)^{\mathrm{2}} −{r}^{\mathrm{2}} }\right] \\ $$$$=\left[{R}+\sqrt{\left({R}−{r}\right)^{\mathrm{2}} −{r}^{\mathrm{2}} }\right]\left[{R}−\sqrt{\left({R}−{r}\right)^{\mathrm{2}} −{r}^{\mathrm{2}} }\right] \\ $$$$={R}^{\mathrm{2}} −\left({R}−{r}\right)^{\mathrm{2}} +{r}^{\mathrm{2}} \\ $$$$=\mathrm{2}{Rr} \\ $$$$\Rightarrow{BC}=\sqrt{\mathrm{2}{Rr}} \\ $$$${BM}={BC}+{CM}=\sqrt{\mathrm{2}{Rr}}+{r} \\ $$$$\mathrm{sin}\:\beta=\frac{{ME}}{{BM}}=\frac{{r}}{{r}+\sqrt{\mathrm{2}{Rr}}} \\ $$$$\Rightarrow\mathrm{sin}\:\beta=\frac{\lambda}{\lambda+\sqrt{\mathrm{2}\lambda}} \\ $$$$\Rightarrow\beta=\mathrm{sin}^{−\mathrm{1}} \frac{\lambda}{\lambda+\sqrt{\mathrm{2}\lambda}} \\ $$$$ \\ $$$${so}\:{that}\:\alpha=\beta: \\ $$$$\mathrm{2}\:\mathrm{tan}^{−\mathrm{1}} \frac{\lambda}{\mathrm{1}+\sqrt{\mathrm{1}−\mathrm{2}\lambda}}=\mathrm{sin}^{−\mathrm{1}} \frac{\lambda}{\lambda+\sqrt{\mathrm{2}\lambda}} \\ $$$$\Rightarrow\lambda=\frac{{r}}{{R}}\approx\mathrm{0}.\mathrm{2215} \\ $$

Commented by ajfour last updated on 07/Jul/18

OM=R−r  OC=(√((R−r)^2 −r^2 ))  tan (α/2) =((CM)/(CA))=(r/(R+(√((R−r)^2 −r^2 ))))    ⇒  tan (α/2) = (r/(R+(√(R^2 −2Rr))))  considering △OBC     BC^(  2) = OB^( 2) −OC^2      BC = (√(R^2 −(R−r)^2 +r^2 ))     BC =(√(2Rr))       sin β = ((DM)/(BC+CM)) = (r/((√(2Rr))+r))  Since α = β      sin β = ((2tan (α/2))/(1+tan^2 (α/2)))  what follows from here, i believe  you did it best Sir. (?)  I had obtained a degree 5 polynomw;  and had found  r/R ≈ 0.22  .

$${OM}={R}−{r} \\ $$$${OC}=\sqrt{\left({R}−{r}\right)^{\mathrm{2}} −{r}^{\mathrm{2}} } \\ $$$$\mathrm{tan}\:\frac{\alpha}{\mathrm{2}}\:=\frac{{CM}}{{CA}}=\frac{{r}}{{R}+\sqrt{\left({R}−{r}\right)^{\mathrm{2}} −{r}^{\mathrm{2}} }} \\ $$$$\:\:\Rightarrow\:\:\mathrm{tan}\:\frac{\alpha}{\mathrm{2}}\:=\:\frac{{r}}{{R}+\sqrt{{R}^{\mathrm{2}} −\mathrm{2}{Rr}}} \\ $$$${considering}\:\bigtriangleup{OBC} \\ $$$$\:\:\:{BC}^{\:\:\mathrm{2}} =\:{OB}^{\:\mathrm{2}} −{OC}\:^{\mathrm{2}} \\ $$$$\:\:\:{BC}\:=\:\sqrt{{R}^{\mathrm{2}} −\left({R}−{r}\right)^{\mathrm{2}} +{r}^{\mathrm{2}} } \\ $$$$\:\:\:{BC}\:=\sqrt{\mathrm{2}{Rr}} \\ $$$$\:\:\:\:\:\mathrm{sin}\:\beta\:=\:\frac{{DM}}{{BC}+{CM}}\:=\:\frac{{r}}{\sqrt{\mathrm{2}{Rr}}+{r}} \\ $$$${Since}\:\alpha\:=\:\beta \\ $$$$\:\:\:\:\mathrm{sin}\:\beta\:=\:\frac{\mathrm{2tan}\:\left(\alpha/\mathrm{2}\right)}{\mathrm{1}+\mathrm{tan}\:^{\mathrm{2}} \left(\alpha/\mathrm{2}\right)} \\ $$$${what}\:{follows}\:{from}\:{here},\:{i}\:{believe} \\ $$$${you}\:{did}\:{it}\:{best}\:{Sir}.\:\left(?\right) \\ $$$${I}\:{had}\:{obtained}\:{a}\:{degree}\:\mathrm{5}\:{polynomw}; \\ $$$${and}\:{had}\:{found}\:\:{r}/{R}\:\approx\:\mathrm{0}.\mathrm{22}\:\:. \\ $$

Commented by MrW3 last updated on 07/Jul/18

Developing such interesting geometry  questions requires deep understanding  and above all a lot of phantasy which  not everybody has. So my respect!

$${Developing}\:{such}\:{interesting}\:{geometry} \\ $$$${questions}\:{requires}\:{deep}\:{understanding} \\ $$$${and}\:{above}\:{all}\:{a}\:{lot}\:{of}\:{phantasy}\:{which} \\ $$$${not}\:{everybody}\:{has}.\:{So}\:{my}\:{respect}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com