Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 39416 by Rio Mike last updated on 06/Jul/18

Given that f(x) is a cubic function  and f(x) = x^3   − (x^2 /4) + 5x − 7  a) find one factor of f(x)  b) find  (d^2 y/dx^2 ) for f(x)  c) hence Evaluate  y = ∫_0 ^∞ f(x).

$${Given}\:{that}\:{f}\left({x}\right)\:{is}\:{a}\:{cubic}\:{function} \\ $$$${and}\:{f}\left({x}\right)\:=\:{x}^{\mathrm{3}} \:\:−\:\frac{{x}^{\mathrm{2}} }{\mathrm{4}}\:+\:\mathrm{5}{x}\:−\:\mathrm{7} \\ $$$$\left.{a}\right)\:{find}\:{one}\:{factor}\:{of}\:{f}\left({x}\right) \\ $$$$\left.{b}\right)\:{find}\:\:\frac{{d}^{\mathrm{2}} {y}}{{dx}^{\mathrm{2}} }\:{for}\:{f}\left({x}\right) \\ $$$$\left.{c}\right)\:{hence}\:{Evaluate}\:\:{y}\:=\:\int_{\mathrm{0}} ^{\infty} {f}\left({x}\right). \\ $$

Answered by MJS last updated on 06/Jul/18

(b) (d^2 y/dx^2 )[f(x)]=f′′(x)=6x−(1/2)  (c) ∫f(x)dx=(1/4)x^4 −(1/(12))x^3 +(5/2)x^2 −7x+C ⇒        ∫_0 ^∞ f(x)dx=+∞  (a) what are we allowed to use?       approximation procedure with a calculator       gives x≈1.15710       Cardano:       x^3 −(1/4)x^2 +5x−7=0       z=x+(1/(12))       z^3 +((239)/(48))z−((5689)/(864))=0       u=(1/(12))((5689+24(√(79890))))^(1/3) ; v=(1/(12))((5689−24(√(79890))))^(1/3)        z_1 =u+v; x_1 =(1/(12))+u+v≈1.15710       z_2 =(−(1/2)+((√3)/2)i)u+(−(1/2)−((√3)/2)i)v       z_2 =(−(1/2)−((√3)/2)i)u+(−(1/2)+((√3)/2)i)v

$$\left({b}\right)\:\frac{{d}^{\mathrm{2}} {y}}{{dx}^{\mathrm{2}} }\left[{f}\left({x}\right)\right]={f}''\left({x}\right)=\mathrm{6}{x}−\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\left({c}\right)\:\int{f}\left({x}\right){dx}=\frac{\mathrm{1}}{\mathrm{4}}{x}^{\mathrm{4}} −\frac{\mathrm{1}}{\mathrm{12}}{x}^{\mathrm{3}} +\frac{\mathrm{5}}{\mathrm{2}}{x}^{\mathrm{2}} −\mathrm{7}{x}+{C}\:\Rightarrow\: \\ $$$$\:\:\:\:\:\underset{\mathrm{0}} {\overset{\infty} {\int}}{f}\left({x}\right){dx}=+\infty \\ $$$$\left({a}\right)\:\mathrm{what}\:\mathrm{are}\:\mathrm{we}\:\mathrm{allowed}\:\mathrm{to}\:\mathrm{use}? \\ $$$$\:\:\:\:\:\mathrm{approximation}\:\mathrm{procedure}\:\mathrm{with}\:\mathrm{a}\:\mathrm{calculator} \\ $$$$\:\:\:\:\:\mathrm{gives}\:{x}\approx\mathrm{1}.\mathrm{15710} \\ $$$$\:\:\:\:\:\mathrm{Cardano}: \\ $$$$\:\:\:\:\:{x}^{\mathrm{3}} −\frac{\mathrm{1}}{\mathrm{4}}{x}^{\mathrm{2}} +\mathrm{5}{x}−\mathrm{7}=\mathrm{0} \\ $$$$\:\:\:\:\:{z}={x}+\frac{\mathrm{1}}{\mathrm{12}} \\ $$$$\:\:\:\:\:{z}^{\mathrm{3}} +\frac{\mathrm{239}}{\mathrm{48}}{z}−\frac{\mathrm{5689}}{\mathrm{864}}=\mathrm{0} \\ $$$$\:\:\:\:\:{u}=\frac{\mathrm{1}}{\mathrm{12}}\sqrt[{\mathrm{3}}]{\mathrm{5689}+\mathrm{24}\sqrt{\mathrm{79890}}};\:{v}=\frac{\mathrm{1}}{\mathrm{12}}\sqrt[{\mathrm{3}}]{\mathrm{5689}−\mathrm{24}\sqrt{\mathrm{79890}}} \\ $$$$\:\:\:\:\:{z}_{\mathrm{1}} ={u}+{v};\:{x}_{\mathrm{1}} =\frac{\mathrm{1}}{\mathrm{12}}+{u}+{v}\approx\mathrm{1}.\mathrm{15710} \\ $$$$\:\:\:\:\:{z}_{\mathrm{2}} =\left(−\frac{\mathrm{1}}{\mathrm{2}}+\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\mathrm{i}\right){u}+\left(−\frac{\mathrm{1}}{\mathrm{2}}−\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\mathrm{i}\right){v} \\ $$$$\:\:\:\:\:{z}_{\mathrm{2}} =\left(−\frac{\mathrm{1}}{\mathrm{2}}−\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\mathrm{i}\right){u}+\left(−\frac{\mathrm{1}}{\mathrm{2}}+\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\mathrm{i}\right){v} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com