Question and Answers Forum

All Questions      Topic List

Trigonometry Questions

Previous in All Question      Next in All Question      

Previous in Trigonometry      Next in Trigonometry      

Question Number 39486 by ajfour last updated on 06/Jul/18

sin θ=sin αsin (((θ+α)/2))  Express θ explicitly in terms of α.

$$\mathrm{sin}\:\theta=\mathrm{sin}\:\alpha\mathrm{sin}\:\left(\frac{\theta+\alpha}{\mathrm{2}}\right) \\ $$$${Express}\:\theta\:{explicitly}\:{in}\:{terms}\:{of}\:\alpha. \\ $$

Commented by math khazana by abdo last updated on 07/Jul/18

⇒2 sin((θ/2))cos((θ/2))=sinα(sin((θ/2))cos((α/2))+  cos((θ/2))sin((α/2)))  let put sin((θ/2))=x ⇒  2xξ(√(1−x^2 )) = sinα( x cos((α/2)) +ξ(√(1−x^2 ))sin((α/2)))⇒  2xξ(√(1−x^2 ))=sinα cos((α/2))x +sinαsin((α/2))ξ(√(1−x^2 ))  (2xξ−sin(α)sin((α/2))ξ)(√(1−x^2 ))=sin(α)cos((α/2))x⇒  (2x −sin(α)sin((α/2)))^2 (1−x^2 )=sin^2 (α)cos^2 ((α/2))x^2   4x^2  −4sin(α)sin((α/2))x +sin^2 (α)sin^2 ((α/2))  −sin^2 (α)cos^2 ((α/2))x^2  =0 ⇒  (4−sin^2 (α)cos^2 ((α/2)))x^2  −4 sin(α)sin((α/2))x  +sin^2 (α)sin^2 ((α/2)) =0  Δ^′   =4 sin^2 (α)sin^2 ((α/2))−(4−sin^2 (α)cos^2 ((α/2)))(sin^2 αsin^2 ((α/2)))  =4 sin^2 (α)sin^2 ((α/2)) −4sin^2 (α)sin^2 ((α/2))   +sin^4 (α) sin^2 ((α/2))cos^2 ((α/2))  =(1/4) sin^6 (α) ⇒x=((2sin(α)sin((α/2))+^− (1/2)∣sinα∣^3 )/(4−sin^2 (α)cos^2 ((α/2)))) ⇒  θ =2arcsin(x)⇒  θ =2arcsin{((2sin(α)sin((α/2)) +^−  (1/2)∣sinα∣^3 )/(4−sin^2 (α)cos^2 ((α/2))))}.

$$\Rightarrow\mathrm{2}\:{sin}\left(\frac{\theta}{\mathrm{2}}\right){cos}\left(\frac{\theta}{\mathrm{2}}\right)={sin}\alpha\left({sin}\left(\frac{\theta}{\mathrm{2}}\right){cos}\left(\frac{\alpha}{\mathrm{2}}\right)+\right. \\ $$$$\left.{cos}\left(\frac{\theta}{\mathrm{2}}\right){sin}\left(\frac{\alpha}{\mathrm{2}}\right)\right)\:\:{let}\:{put}\:{sin}\left(\frac{\theta}{\mathrm{2}}\right)={x}\:\Rightarrow \\ $$$$\mathrm{2}{x}\xi\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }\:=\:{sin}\alpha\left(\:{x}\:{cos}\left(\frac{\alpha}{\mathrm{2}}\right)\:+\xi\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }{sin}\left(\frac{\alpha}{\mathrm{2}}\right)\right)\Rightarrow \\ $$$$\mathrm{2}{x}\xi\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }={sin}\alpha\:{cos}\left(\frac{\alpha}{\mathrm{2}}\right){x}\:+{sin}\alpha{sin}\left(\frac{\alpha}{\mathrm{2}}\right)\xi\sqrt{\mathrm{1}−{x}^{\mathrm{2}} } \\ $$$$\left(\mathrm{2}{x}\xi−{sin}\left(\alpha\right){sin}\left(\frac{\alpha}{\mathrm{2}}\right)\xi\right)\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }={sin}\left(\alpha\right){cos}\left(\frac{\alpha}{\mathrm{2}}\right){x}\Rightarrow \\ $$$$\left(\mathrm{2}{x}\:−{sin}\left(\alpha\right){sin}\left(\frac{\alpha}{\mathrm{2}}\right)\right)^{\mathrm{2}} \left(\mathrm{1}−{x}^{\mathrm{2}} \right)={sin}^{\mathrm{2}} \left(\alpha\right){cos}^{\mathrm{2}} \left(\frac{\alpha}{\mathrm{2}}\right){x}^{\mathrm{2}} \\ $$$$\mathrm{4}{x}^{\mathrm{2}} \:−\mathrm{4}{sin}\left(\alpha\right){sin}\left(\frac{\alpha}{\mathrm{2}}\right){x}\:+{sin}^{\mathrm{2}} \left(\alpha\right){sin}^{\mathrm{2}} \left(\frac{\alpha}{\mathrm{2}}\right) \\ $$$$−{sin}^{\mathrm{2}} \left(\alpha\right){cos}^{\mathrm{2}} \left(\frac{\alpha}{\mathrm{2}}\right){x}^{\mathrm{2}} \:=\mathrm{0}\:\Rightarrow \\ $$$$\left(\mathrm{4}−{sin}^{\mathrm{2}} \left(\alpha\right){cos}^{\mathrm{2}} \left(\frac{\alpha}{\mathrm{2}}\right)\right){x}^{\mathrm{2}} \:−\mathrm{4}\:{sin}\left(\alpha\right){sin}\left(\frac{\alpha}{\mathrm{2}}\right){x} \\ $$$$+{sin}^{\mathrm{2}} \left(\alpha\right){sin}^{\mathrm{2}} \left(\frac{\alpha}{\mathrm{2}}\right)\:=\mathrm{0} \\ $$$$\Delta^{'} \:\:=\mathrm{4}\:{sin}^{\mathrm{2}} \left(\alpha\right){sin}^{\mathrm{2}} \left(\frac{\alpha}{\mathrm{2}}\right)−\left(\mathrm{4}−{sin}^{\mathrm{2}} \left(\alpha\right){cos}^{\mathrm{2}} \left(\frac{\alpha}{\mathrm{2}}\right)\right)\left({sin}^{\mathrm{2}} \alpha{sin}^{\mathrm{2}} \left(\frac{\alpha}{\mathrm{2}}\right)\right) \\ $$$$=\mathrm{4}\:{sin}^{\mathrm{2}} \left(\alpha\right){sin}^{\mathrm{2}} \left(\frac{\alpha}{\mathrm{2}}\right)\:−\mathrm{4}{sin}^{\mathrm{2}} \left(\alpha\right){sin}^{\mathrm{2}} \left(\frac{\alpha}{\mathrm{2}}\right)\: \\ $$$$+{sin}^{\mathrm{4}} \left(\alpha\right)\:{sin}^{\mathrm{2}} \left(\frac{\alpha}{\mathrm{2}}\right){cos}^{\mathrm{2}} \left(\frac{\alpha}{\mathrm{2}}\right) \\ $$$$=\frac{\mathrm{1}}{\mathrm{4}}\:{sin}^{\mathrm{6}} \left(\alpha\right)\:\Rightarrow{x}=\frac{\mathrm{2}{sin}\left(\alpha\right){sin}\left(\frac{\alpha}{\mathrm{2}}\right)\overset{−} {+}\frac{\mathrm{1}}{\mathrm{2}}\mid{sin}\alpha\mid^{\mathrm{3}} }{\mathrm{4}−{sin}^{\mathrm{2}} \left(\alpha\right){cos}^{\mathrm{2}} \left(\frac{\alpha}{\mathrm{2}}\right)}\:\Rightarrow \\ $$$$\theta\:=\mathrm{2}{arcsin}\left({x}\right)\Rightarrow \\ $$$$\theta\:=\mathrm{2}{arcsin}\left\{\frac{\mathrm{2}{sin}\left(\alpha\right){sin}\left(\frac{\alpha}{\mathrm{2}}\right)\:\overset{−} {+}\:\frac{\mathrm{1}}{\mathrm{2}}\mid{sin}\alpha\mid^{\mathrm{3}} }{\mathrm{4}−{sin}^{\mathrm{2}} \left(\alpha\right){cos}^{\mathrm{2}} \left(\frac{\alpha}{\mathrm{2}}\right)}\right\}. \\ $$$$ \\ $$

Commented by tanmay.chaudhury50@gmail.com last updated on 07/Jul/18

excellent question..pls give time ...

$${excellent}\:{question}..{pls}\:{give}\:{time}\:... \\ $$$$ \\ $$$$ \\ $$$$ \\ $$

Commented by math khazana by abdo last updated on 07/Jul/18

ξ^2  =1

$$\xi^{\mathrm{2}} \:=\mathrm{1} \\ $$

Commented by ajfour last updated on 07/Jul/18

Commented by ajfour last updated on 07/Jul/18

If we take ∠CAD to be θ and  express  θ in terms of α. We then  obtain a in terms of radius R  and 𝛂 (which was the question).

$${If}\:{we}\:{take}\:\angle{CAD}\:{to}\:{be}\:\theta\:{and} \\ $$$${express}\:\:\theta\:{in}\:{terms}\:{of}\:\alpha.\:{We}\:{then} \\ $$$${obtain}\:\boldsymbol{{a}}\:{in}\:{terms}\:{of}\:{radius}\:{R} \\ $$$${and}\:\boldsymbol{\alpha}\:\left({which}\:{was}\:{the}\:{question}\right). \\ $$

Commented by ajfour last updated on 07/Jul/18

Thank you Sir, let me see if i can  follow your solution.

$${Thank}\:{you}\:{Sir},\:{let}\:{me}\:{see}\:{if}\:{i}\:{can} \\ $$$${follow}\:{your}\:{solution}. \\ $$

Commented by ajfour last updated on 08/Jul/18

line 6 to line 7 how Sir, please check;  what about term with x^4  and x^3   ?

$${line}\:\mathrm{6}\:{to}\:{line}\:\mathrm{7}\:{how}\:{Sir},\:{please}\:{check}; \\ $$$${what}\:{about}\:{term}\:{with}\:{x}^{\mathrm{4}} \:{and}\:{x}^{\mathrm{3}} \:\:? \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com