Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 39508 by behi83417@gmail.com last updated on 06/Jul/18

Commented by behi83417@gmail.com last updated on 06/Jul/18

Right angele:AB^△ A′,(∡B=90^• ) is  given.  red lines are angular bisectors of  ∡A,∡A′.  1)show that:S_(AD^◊ CA′) =2S_(AE^△ A′)   2)((AA′)/(DC))=?,(S_(AEA′) /S_(DE^△ C) )=?.

Rightangele:ABA,(B=90)isgiven.redlinesareangularbisectorsofA,A.1)showthat:SADCA=2SAEA2)AADC=?,SAEASDEC=?.

Answered by MrW3 last updated on 07/Jul/18

Commented by MrW3 last updated on 07/Jul/18

∠A′+∠A=90°  A′C′=A′C  AD′=AD  ⇒C′E=CE, D′E=DE  ∠CED=∠A′EA=180°−((∠A′)/2)−((∠A)/2)=135°  α=180°−135°=45°  ∠C′ED′=135°−2α=45°  A_(ΔCED) =(1/2)×CE×DE×sin ∠CED  A_(ΔC′ED′) =(1/2)×C′E×D′E×sin ∠C′ED′  =(1/2)×CE×DE×sin 45°  =(1/2)×CE×DE×sin 135°  =(1/2)×CE×DE×sin ∠CED  =A_(ΔCED)   A_(ΔA′EA) =A_(ΔA′EC′) +A_(ΔC′ED′) +A_(ΔD′EA)   =A_(ΔA′EC) +A_(ΔCED) +A_(ΔDEA)   A_(A′CDA) =A_(ΔA′EA) +A_(ΔA′EC) +A_(ΔCED) +A_(ΔDEA)   =2A_(ΔA′EA)

A+A=90°AC=ACAD=ADCE=CE,DE=DECED=AEA=180°A2A2=135°α=180°135°=45°CED=135°2α=45°AΔCED=12×CE×DE×sinCEDAΔCED=12×CE×DE×sinCED=12×CE×DE×sin45°=12×CE×DE×sin135°=12×CE×DE×sinCED=AΔCEDAΔAEA=AΔAEC+AΔCED+AΔDEA=AΔAEC+AΔCED+AΔDEAAACDA=AΔAEA+AΔAEC+AΔCED+AΔDEA=2AΔAEA

Commented by behi83417@gmail.com last updated on 07/Jul/18

sweet waiting and nice proof.thanks  my master.

sweetwaitingandniceproof.thanksmymaster.

Commented by behi83417@gmail.com last updated on 07/Jul/18

perpendicular from :E to AA′,say:EH.  S_(AEA′) =(1/2).EH.AA′=(1/2).r.b  [r=radius of incircle of AB^△ A′.]  ((sin(A/2))/(A′C))=((sinACA′)/b),((sin(A/2))/(BC))=((sinACB)/c)  (b/(A′C))=(c/(BC))⇒((A′C)/(BC))=(b/c)⇒((A′C)/a)=(b/(b+c))  ⇒A′C=((ab)/(b+c)),BC=((ac)/(b+c)),BD=((ca)/(b+a)),AD=((cb)/(b+a))  S_(ADCA′) =S_(ABA′) −S_(DBC) =(1/2)ac−(1/2)BD.BC=  =(1/2)ac−(1/2).((ac)/(a+b)).((ac)/(b+c))=((ac)/2)(1−((ac)/((a+b)(b+c))))=  =((ac)/2)(((ab+ac+b^2 +bc−ac)/((a+b)(b+c))))=((ac)/2).((b^2 +ab+bc)/((a+b)(b+c)))=  =((ac)/2).((a^2 +c^2 +b^2 +2ba+2bc)/(2(a+b)(b+c)))=((ac)/2).(((a+b+c)^2 −2ac)/(2ab+2ac+2b^2 +2bc))=  =S.(((2p)^2 −4S)/((2p)^2 ))=S.((p^2 −S)/p^2 )=S−(S^2 /p^2 )=S−r^2 =  =r.p−r^2 =r.(p−r)=r.b=2S_(AEA′) .  ■  note:in right angle triangle:b=p−r   because:  p−r=p−(S/p)=((p^2 −S)/p)=  =(((a+b+c)^2 −2ac)/(4p))=((a^2 +b^2 +c^2 +2ab+2bc)/(4p))  =((2b^2 +2ba+2bc)/(4p))=((2b(a+b+c))/(4p))=((2b.2p)/(4p))=b.

perpendicularfrom:EtoAA,say:EH.SAEA=12.EH.AA=12.r.b[r=radiusofincircleofABA.]sinA2AC=sinACAb,sinA2BC=sinACBcbAC=cBCACBC=bcACa=bb+cAC=abb+c,BC=acb+c,BD=cab+a,AD=cbb+aSADCA=SABASDBC=12ac12BD.BC==12ac12.aca+b.acb+c=ac2(1ac(a+b)(b+c))==ac2(ab+ac+b2+bcac(a+b)(b+c))=ac2.b2+ab+bc(a+b)(b+c)==ac2.a2+c2+b2+2ba+2bc2(a+b)(b+c)=ac2.(a+b+c)22ac2ab+2ac+2b2+2bc==S.(2p)24S(2p)2=S.p2Sp2=SS2p2=Sr2==r.pr2=r.(pr)=r.b=2SAEA.note:inrightangletriangle:b=prbecause:pr=pSp=p2Sp==(a+b+c)22ac4p=a2+b2+c2+2ab+2bc4p=2b2+2ba+2bc4p=2b(a+b+c)4p=2b.2p4p=b.

Commented by behi83417@gmail.com last updated on 07/Jul/18

DC^2 =DB^2 +CB^2 =(((ac)/(a+b)))^2 +(((ac)/(c+b)))^2 =  a^2 c^2 .(((b+c)^2 +(b+a)^2 )/((a+b)^2 (c+b)^2 ))=((4S^2 b(b+p))/(4p^4 ))=  =(S^2 /p^2 ).b.((b+p)/p^2 )=b.r^2 .((2p−r)/p^2 )=b.(r^2 /p^2 )(2p−r)  ⇒((DC)/(AA′))=(r^2 /p^2 )(2p−r).  note:  (b+c)^2 +(b+a)^2 =3b^2 +2bc+2ab=  b(3b+a+c)=b(2b+2p)=2b(b+p)  (a+b)(c+b)=ac+ab+bc+b^2 =  =((a^2 +b^2 +c^2 +2ac+2bc+2ab)/2)=(((2p)^2 )/2)=2p^2

DC2=DB2+CB2=(aca+b)2+(acc+b)2=a2c2.(b+c)2+(b+a)2(a+b)2(c+b)2=4S2b(b+p)4p4==S2p2.b.b+pp2=b.r2.2prp2=b.r2p2(2pr)DCAA=r2p2(2pr).note:(b+c)2+(b+a)2=3b2+2bc+2ab=b(3b+a+c)=b(2b+2p)=2b(b+p)(a+b)(c+b)=ac+ab+bc+b2==a2+b2+c2+2ac+2bc+2ab2=(2p)22=2p2

Commented by behi83417@gmail.com last updated on 08/Jul/18

S_(ACE) =(1/2).r.A′C=(1/2).r.((ab)/(b+c))  S_(ADE) =(1/2).r.AD=(1/2).r.((c.b)/(a+b))  S_(DEC) =2S_(AEA′) −S_(AEA′) −((b.r)/2)((a/(b+c))+(c/(a+b)))=  =((b.r)/2)(1−(a/(b+c))−(c/(a+b)))=((br(ab+ac+bc+b^2 −a^2 −ab−c^2 −cb))/(2(b+c)(b+a)))=  =((br.ac)/(4p^2 ))=((br.2S)/(4p^2 ))=(b/(2p))  ⇒(S_(AEA′) /S_(DRC) )=(((br)/2)/(b/(2p)))=r.p   (????????????→∞)

SACE=12.r.AC=12.r.abb+cSADE=12.r.AD=12.r.c.ba+bSDEC=2SAEASAEAb.r2(ab+c+ca+b)==b.r2(1ab+cca+b)=br(ab+ac+bc+b2a2abc2cb)2(b+c)(b+a)==br.ac4p2=br.2S4p2=b2pSAEASDRC=br2b2p=r.p(????????????)

Terms of Service

Privacy Policy

Contact: info@tinkutara.com