Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 39559 by ajfour last updated on 07/Jul/18

Commented by ajfour last updated on 07/Jul/18

Find 𝛂 and radius r in terms of a.

$${Find}\:\boldsymbol{\alpha}\:{and}\:{radius}\:\boldsymbol{{r}}\:{in}\:{terms}\:{of}\:\boldsymbol{{a}}. \\ $$

Answered by MrW3 last updated on 08/Jul/18

2R×cos α=1+a   ...(i)  (R/(cos α))−1=(R+R tan α) sin α   ...(ii)  ⇒R=((1+a)/(2 cos α))  ((1+a)/(2 cos^2  α))−1=((1+a)/(2 cos α))(1+((sin α)/(cos α))) sin α  ((1+a−2 cos^2  α)/(2 cos^2  α))=(((1+a)(cos α+sin α)sin α)/(2 cos^2  α))  1+a−2 cos^2  α=(1+a)(sin α cos α+sin^2  α)  2[a−(2 cos^2  α−1)]=(1+a)(2sin α cos α−(1−2sin^2  α)+1)  2(a−cos 2α)=(1+a)(sin 2α−cos 2α+1)  2a−2 cos 2α=(1+a) sin 2α−(1+a) cos 2α+(1+a)  (a+1) sin 2α−(a−1) cos 2α=a−1  ((a+1)/(√((a+1)^2 +(a−1)^2 ))) sin 2α−((a−1)/(√((a+1)^2 +(a−1)^2 ))) cos 2α=((a−1)/(√((a+1)^2 +(a−1)^2 )))  ((a+1)/(√(2(a^2 +1)))) sin 2α−((a−1)/(√(2(a^2 +1)))) cos 2α=((a−1)/(√(2(a^2 +1))))  cos θ sin 2α−sin θ cos 2α=sin  θ  sin (2α−θ)=sin θ  ⇒2α−θ=θ  ⇒α=θ=tan^(−1) ((a−1)/(a+1))  ⇒cos α=cos θ=((a+1)/(√(2(a^2 +1))))  ⇒R=((1+a)/(2 cos α))=((1+a)/(2×((a+1)/(√(2(a^2 +1))))))=(√((a^2 +1)/2))

$$\mathrm{2}{R}×\mathrm{cos}\:\alpha=\mathrm{1}+{a}\:\:\:...\left({i}\right) \\ $$$$\frac{{R}}{\mathrm{cos}\:\alpha}−\mathrm{1}=\left({R}+{R}\:\mathrm{tan}\:\alpha\right)\:\mathrm{sin}\:\alpha\:\:\:...\left({ii}\right) \\ $$$$\Rightarrow{R}=\frac{\mathrm{1}+{a}}{\mathrm{2}\:\mathrm{cos}\:\alpha} \\ $$$$\frac{\mathrm{1}+{a}}{\mathrm{2}\:\mathrm{cos}^{\mathrm{2}} \:\alpha}−\mathrm{1}=\frac{\mathrm{1}+{a}}{\mathrm{2}\:\mathrm{cos}\:\alpha}\left(\mathrm{1}+\frac{\mathrm{sin}\:\alpha}{\mathrm{cos}\:\alpha}\right)\:\mathrm{sin}\:\alpha \\ $$$$\frac{\mathrm{1}+{a}−\mathrm{2}\:\mathrm{cos}^{\mathrm{2}} \:\alpha}{\mathrm{2}\:\mathrm{cos}^{\mathrm{2}} \:\alpha}=\frac{\left(\mathrm{1}+{a}\right)\left(\mathrm{cos}\:\alpha+\mathrm{sin}\:\alpha\right)\mathrm{sin}\:\alpha}{\mathrm{2}\:\mathrm{cos}^{\mathrm{2}} \:\alpha} \\ $$$$\mathrm{1}+{a}−\mathrm{2}\:\mathrm{cos}^{\mathrm{2}} \:\alpha=\left(\mathrm{1}+{a}\right)\left(\mathrm{sin}\:\alpha\:\mathrm{cos}\:\alpha+\mathrm{sin}^{\mathrm{2}} \:\alpha\right) \\ $$$$\mathrm{2}\left[{a}−\left(\mathrm{2}\:\mathrm{cos}^{\mathrm{2}} \:\alpha−\mathrm{1}\right)\right]=\left(\mathrm{1}+{a}\right)\left(\mathrm{2sin}\:\alpha\:\mathrm{cos}\:\alpha−\left(\mathrm{1}−\mathrm{2sin}^{\mathrm{2}} \:\alpha\right)+\mathrm{1}\right) \\ $$$$\mathrm{2}\left({a}−\mathrm{cos}\:\mathrm{2}\alpha\right)=\left(\mathrm{1}+{a}\right)\left(\mathrm{sin}\:\mathrm{2}\alpha−\mathrm{cos}\:\mathrm{2}\alpha+\mathrm{1}\right) \\ $$$$\mathrm{2}{a}−\mathrm{2}\:\mathrm{cos}\:\mathrm{2}\alpha=\left(\mathrm{1}+{a}\right)\:\mathrm{sin}\:\mathrm{2}\alpha−\left(\mathrm{1}+{a}\right)\:\mathrm{cos}\:\mathrm{2}\alpha+\left(\mathrm{1}+{a}\right) \\ $$$$\left({a}+\mathrm{1}\right)\:\mathrm{sin}\:\mathrm{2}\alpha−\left({a}−\mathrm{1}\right)\:\mathrm{cos}\:\mathrm{2}\alpha={a}−\mathrm{1} \\ $$$$\frac{{a}+\mathrm{1}}{\sqrt{\left({a}+\mathrm{1}\right)^{\mathrm{2}} +\left({a}−\mathrm{1}\right)^{\mathrm{2}} }}\:\mathrm{sin}\:\mathrm{2}\alpha−\frac{{a}−\mathrm{1}}{\sqrt{\left({a}+\mathrm{1}\right)^{\mathrm{2}} +\left({a}−\mathrm{1}\right)^{\mathrm{2}} }}\:\mathrm{cos}\:\mathrm{2}\alpha=\frac{{a}−\mathrm{1}}{\sqrt{\left({a}+\mathrm{1}\right)^{\mathrm{2}} +\left({a}−\mathrm{1}\right)^{\mathrm{2}} }} \\ $$$$\frac{{a}+\mathrm{1}}{\sqrt{\mathrm{2}\left({a}^{\mathrm{2}} +\mathrm{1}\right)}}\:\mathrm{sin}\:\mathrm{2}\alpha−\frac{{a}−\mathrm{1}}{\sqrt{\mathrm{2}\left({a}^{\mathrm{2}} +\mathrm{1}\right)}}\:\mathrm{cos}\:\mathrm{2}\alpha=\frac{{a}−\mathrm{1}}{\sqrt{\mathrm{2}\left({a}^{\mathrm{2}} +\mathrm{1}\right)}} \\ $$$$\mathrm{cos}\:\theta\:\mathrm{sin}\:\mathrm{2}\alpha−\mathrm{sin}\:\theta\:\mathrm{cos}\:\mathrm{2}\alpha=\mathrm{sin}\:\:\theta \\ $$$$\mathrm{sin}\:\left(\mathrm{2}\alpha−\theta\right)=\mathrm{sin}\:\theta \\ $$$$\Rightarrow\mathrm{2}\alpha−\theta=\theta \\ $$$$\Rightarrow\alpha=\theta=\mathrm{tan}^{−\mathrm{1}} \frac{{a}−\mathrm{1}}{{a}+\mathrm{1}} \\ $$$$\Rightarrow\mathrm{cos}\:\alpha=\mathrm{cos}\:\theta=\frac{{a}+\mathrm{1}}{\sqrt{\mathrm{2}\left({a}^{\mathrm{2}} +\mathrm{1}\right)}} \\ $$$$\Rightarrow{R}=\frac{\mathrm{1}+{a}}{\mathrm{2}\:\mathrm{cos}\:\alpha}=\frac{\mathrm{1}+{a}}{\mathrm{2}×\frac{{a}+\mathrm{1}}{\sqrt{\mathrm{2}\left({a}^{\mathrm{2}} +\mathrm{1}\right)}}}=\sqrt{\frac{{a}^{\mathrm{2}} +\mathrm{1}}{\mathrm{2}}} \\ $$

Commented by ajfour last updated on 08/Jul/18

Correct Sir, thanks; i thought  you would make it shorter than  my solution; its almost the same  length.

$${Correct}\:{Sir},\:{thanks};\:{i}\:{thought} \\ $$$${you}\:{would}\:{make}\:{it}\:{shorter}\:{than} \\ $$$${my}\:{solution};\:{its}\:{almost}\:{the}\:{same} \\ $$$${length}. \\ $$

Answered by ajfour last updated on 08/Jul/18

2Rcos α = a+1  Rsec α−(R+Rtan α)sin α = 1  From above two eqs.  (1/R)= ((2cos α)/(a+1))=sec α−(1+tan α)sin α  ⇒ ((2cos^2 α)/(a+1))=1−sin αcos α−sin^2 α  ⇒  ((2cos^2 α)/(a+1))=cos α(cos α−sin α)  ⇒  ((2cos α)/(cos α−sin α)) = a+1  ⇒    (2/(1−tan α)) = a+1  ⇒    tan α = 1−(2/(a+1)) = ((a−1)/(a+1))           α = tan^(−1) (((a−1)/(a+1)))    R = ((a+1)/(2cos α)) =(((a+1)(√((a−1)^2 +(a+1)^2 )))/(2(a+1)))           R = (√((a^2 +1)/2))  .

$$\mathrm{2}{R}\mathrm{cos}\:\alpha\:=\:{a}+\mathrm{1} \\ $$$${R}\mathrm{sec}\:\alpha−\left({R}+{R}\mathrm{tan}\:\alpha\right)\mathrm{sin}\:\alpha\:=\:\mathrm{1} \\ $$$${From}\:{above}\:{two}\:{eqs}. \\ $$$$\frac{\mathrm{1}}{{R}}=\:\frac{\mathrm{2cos}\:\alpha}{{a}+\mathrm{1}}=\mathrm{sec}\:\alpha−\left(\mathrm{1}+\mathrm{tan}\:\alpha\right)\mathrm{sin}\:\alpha \\ $$$$\Rightarrow\:\frac{\mathrm{2cos}\:^{\mathrm{2}} \alpha}{{a}+\mathrm{1}}=\mathrm{1}−\mathrm{sin}\:\alpha\mathrm{cos}\:\alpha−\mathrm{sin}\:^{\mathrm{2}} \alpha \\ $$$$\Rightarrow\:\:\frac{\mathrm{2cos}\:^{\mathrm{2}} \alpha}{{a}+\mathrm{1}}=\mathrm{cos}\:\alpha\left(\mathrm{cos}\:\alpha−\mathrm{sin}\:\alpha\right) \\ $$$$\Rightarrow\:\:\frac{\mathrm{2cos}\:\alpha}{\mathrm{cos}\:\alpha−\mathrm{sin}\:\alpha}\:=\:{a}+\mathrm{1} \\ $$$$\Rightarrow\:\:\:\:\frac{\mathrm{2}}{\mathrm{1}−\mathrm{tan}\:\alpha}\:=\:{a}+\mathrm{1} \\ $$$$\Rightarrow\:\:\:\:\mathrm{tan}\:\alpha\:=\:\mathrm{1}−\frac{\mathrm{2}}{{a}+\mathrm{1}}\:=\:\frac{{a}−\mathrm{1}}{{a}+\mathrm{1}} \\ $$$$\:\:\:\:\:\:\:\:\:\alpha\:=\:\mathrm{tan}^{−\mathrm{1}} \left(\frac{{a}−\mathrm{1}}{{a}+\mathrm{1}}\right) \\ $$$$\:\:{R}\:=\:\frac{{a}+\mathrm{1}}{\mathrm{2cos}\:\alpha}\:=\frac{\left({a}+\mathrm{1}\right)\sqrt{\left({a}−\mathrm{1}\right)^{\mathrm{2}} +\left({a}+\mathrm{1}\right)^{\mathrm{2}} }}{\mathrm{2}\left({a}+\mathrm{1}\right)} \\ $$$$\:\:\:\:\:\:\:\:\:{R}\:=\:\sqrt{\frac{{a}^{\mathrm{2}} +\mathrm{1}}{\mathrm{2}}}\:\:. \\ $$

Commented by MrW3 last updated on 08/Jul/18

very nice sir!

$${very}\:{nice}\:{sir}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com