Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 39607 by Rio Mike last updated on 08/Jul/18

find the   minimum and maximum value  of the quadratic functions  a) 4x^2  + 5x + 1  b) x + (2/x) = 3  c) x^2  − (x/4) + 6  hence draw each draw

$${find}\:{the}\: \\ $$$${minimum}\:{and}\:{maximum}\:{value} \\ $$$${of}\:{the}\:{quadratic}\:{functions} \\ $$$$\left.{a}\right)\:\mathrm{4}{x}^{\mathrm{2}} \:+\:\mathrm{5}{x}\:+\:\mathrm{1} \\ $$$$\left.{b}\right)\:{x}\:+\:\frac{\mathrm{2}}{{x}}\:=\:\mathrm{3} \\ $$$$\left.{c}\right)\:{x}^{\mathrm{2}} \:−\:\frac{{x}}{\mathrm{4}}\:+\:\mathrm{6} \\ $$$${hence}\:{draw}\:{each}\:{draw} \\ $$

Answered by tanmay.chaudhury50@gmail.com last updated on 08/Jul/18

a)4x^2 +5x+1  4(x^2 +(5/4)x+(1/4))  4{(x^2 +2.x.(5/8)+((25)/(64))+(1/4)−((25)/(64)))}  4{(x+(5/8))^2 +((16−25)/(64))}  4{(x+(5/8))^2 +((−9)/(64))}  4(x+(5/8))^2 −(9/(16))  (x+(5/8))^2 >0  as the value of x increases so the value of   (x+(5/8))^2  increases...hence 4x^2 +5x+1 has no  maximum value..its minimum value is  ((−9)/(16)) when x=((−5)/8)  other method...  by using calculus  y=4x^2 +5x+1  (dy/dx)=8x+5  for min/max (dy/dx)=0   so x=−(5/8)  (d^2 y/dx^2 )=8   that means (d^2 y/dx^2 )>0  so 4x^2 +5x+1  has minimum value at x=−(5/8)  4.(((25)/(64)))+5(((−5)/8))+1  ((25)/(16))−((25)/8)+1    ((25−50+16)/(16))=((−9)/(16))

$$\left.{a}\right)\mathrm{4}{x}^{\mathrm{2}} +\mathrm{5}{x}+\mathrm{1} \\ $$$$\mathrm{4}\left({x}^{\mathrm{2}} +\frac{\mathrm{5}}{\mathrm{4}}{x}+\frac{\mathrm{1}}{\mathrm{4}}\right) \\ $$$$\mathrm{4}\left\{\left({x}^{\mathrm{2}} +\mathrm{2}.{x}.\frac{\mathrm{5}}{\mathrm{8}}+\frac{\mathrm{25}}{\mathrm{64}}+\frac{\mathrm{1}}{\mathrm{4}}−\frac{\mathrm{25}}{\mathrm{64}}\right)\right\} \\ $$$$\mathrm{4}\left\{\left({x}+\frac{\mathrm{5}}{\mathrm{8}}\right)^{\mathrm{2}} +\frac{\mathrm{16}−\mathrm{25}}{\mathrm{64}}\right\} \\ $$$$\mathrm{4}\left\{\left({x}+\frac{\mathrm{5}}{\mathrm{8}}\right)^{\mathrm{2}} +\frac{−\mathrm{9}}{\mathrm{64}}\right\} \\ $$$$\mathrm{4}\left({x}+\frac{\mathrm{5}}{\mathrm{8}}\right)^{\mathrm{2}} −\frac{\mathrm{9}}{\mathrm{16}} \\ $$$$\left({x}+\frac{\mathrm{5}}{\mathrm{8}}\right)^{\mathrm{2}} >\mathrm{0} \\ $$$${as}\:{the}\:{value}\:{of}\:{x}\:{increases}\:{so}\:{the}\:{value}\:{of}\: \\ $$$$\left({x}+\frac{\mathrm{5}}{\mathrm{8}}\right)^{\mathrm{2}} \:{increases}...{hence}\:\mathrm{4}{x}^{\mathrm{2}} +\mathrm{5}{x}+\mathrm{1}\:{has}\:{no} \\ $$$${maximum}\:{value}..{its}\:{minimum}\:{value}\:{is} \\ $$$$\frac{−\mathrm{9}}{\mathrm{16}}\:{when}\:{x}=\frac{−\mathrm{5}}{\mathrm{8}} \\ $$$$\boldsymbol{{other}}\:\boldsymbol{{method}}... \\ $$$${by}\:{using}\:{calculus} \\ $$$${y}=\mathrm{4}{x}^{\mathrm{2}} +\mathrm{5}{x}+\mathrm{1} \\ $$$$\frac{{dy}}{{dx}}=\mathrm{8}{x}+\mathrm{5} \\ $$$${for}\:{min}/{max}\:\frac{{dy}}{{dx}}=\mathrm{0}\:\:\:{so}\:{x}=−\frac{\mathrm{5}}{\mathrm{8}} \\ $$$$\frac{{d}^{\mathrm{2}} {y}}{{dx}^{\mathrm{2}} }=\mathrm{8}\:\:\:{that}\:{means}\:\frac{{d}^{\mathrm{2}} {y}}{{dx}^{\mathrm{2}} }>\mathrm{0} \\ $$$${so}\:\mathrm{4}{x}^{\mathrm{2}} +\mathrm{5}{x}+\mathrm{1}\:\:{has}\:{minimum}\:{value}\:{at}\:{x}=−\frac{\mathrm{5}}{\mathrm{8}} \\ $$$$\mathrm{4}.\left(\frac{\mathrm{25}}{\mathrm{64}}\right)+\mathrm{5}\left(\frac{−\mathrm{5}}{\mathrm{8}}\right)+\mathrm{1} \\ $$$$\frac{\mathrm{25}}{\mathrm{16}}−\frac{\mathrm{25}}{\mathrm{8}}+\mathrm{1}\:\: \\ $$$$\frac{\mathrm{25}−\mathrm{50}+\mathrm{16}}{\mathrm{16}}=\frac{−\mathrm{9}}{\mathrm{16}} \\ $$$$ \\ $$$$ \\ $$

Answered by tanmay.chaudhury50@gmail.com last updated on 08/Jul/18

c)y=((4x^2 −x+24)/4)  (1/4){(2x)^2 −2.2x.(1/4)+(1/(16))+24−(1/(16))}  (1/4){(2x−(1/4))^2 +((24×16−1)/(16))}  as the value of x increases so the value of  expression increases..so the expression has  no maximum value..  its minimum value is ((24×16−1)/(4×16))  when x=(1/8)  min value=((383)/(64))  when x=(1/8)  by calculus  y=x^2 −(x/4)+6  (dy/dx)=2x−(1/4)  for min/max (dy/dx)=0   so x=(1/8)  (d^2 y/dx^2 )=2        so  (d^2 y/dx^2 )>0  so the expression has min value at x=(1/8)  min valud ((1/8))^2 −(1/(32))+6  ((1−2+384)/(64)) =((383)/(64))

$$\left.{c}\right){y}=\frac{\mathrm{4}{x}^{\mathrm{2}} −{x}+\mathrm{24}}{\mathrm{4}} \\ $$$$\frac{\mathrm{1}}{\mathrm{4}}\left\{\left(\mathrm{2}{x}\right)^{\mathrm{2}} −\mathrm{2}.\mathrm{2}{x}.\frac{\mathrm{1}}{\mathrm{4}}+\frac{\mathrm{1}}{\mathrm{16}}+\mathrm{24}−\frac{\mathrm{1}}{\mathrm{16}}\right\} \\ $$$$\frac{\mathrm{1}}{\mathrm{4}}\left\{\left(\mathrm{2}{x}−\frac{\mathrm{1}}{\mathrm{4}}\right)^{\mathrm{2}} +\frac{\mathrm{24}×\mathrm{16}−\mathrm{1}}{\mathrm{16}}\right\} \\ $$$${as}\:{the}\:{value}\:{of}\:{x}\:{increases}\:{so}\:{the}\:{value}\:{of} \\ $$$${expression}\:{increases}..{so}\:{the}\:{expression}\:{has} \\ $$$${no}\:{maximum}\:{value}.. \\ $$$${its}\:{minimum}\:{value}\:{is}\:\frac{\mathrm{24}×\mathrm{16}−\mathrm{1}}{\mathrm{4}×\mathrm{16}}\:\:{when}\:{x}=\frac{\mathrm{1}}{\mathrm{8}} \\ $$$${min}\:{value}=\frac{\mathrm{383}}{\mathrm{64}}\:\:{when}\:{x}=\frac{\mathrm{1}}{\mathrm{8}} \\ $$$$\boldsymbol{{by}}\:\boldsymbol{{calculus}} \\ $$$${y}={x}^{\mathrm{2}} −\frac{{x}}{\mathrm{4}}+\mathrm{6} \\ $$$$\frac{{dy}}{{dx}}=\mathrm{2}{x}−\frac{\mathrm{1}}{\mathrm{4}} \\ $$$${for}\:{min}/{max}\:\frac{{dy}}{{dx}}=\mathrm{0}\:\:\:{so}\:{x}=\frac{\mathrm{1}}{\mathrm{8}} \\ $$$$\frac{\boldsymbol{{d}}^{\mathrm{2}} \boldsymbol{{y}}}{\boldsymbol{{dx}}^{\mathrm{2}} }=\mathrm{2}\:\:\:\:\:\:\:\:{so}\:\:\frac{\boldsymbol{{d}}^{\mathrm{2}} \boldsymbol{{y}}}{{dx}^{\mathrm{2}} }>\mathrm{0} \\ $$$${so}\:{the}\:{expression}\:{has}\:{min}\:{value}\:{at}\:{x}=\frac{\mathrm{1}}{\mathrm{8}} \\ $$$${min}\:{valud}\:\left(\frac{\mathrm{1}}{\mathrm{8}}\right)^{\mathrm{2}} −\frac{\mathrm{1}}{\mathrm{32}}+\mathrm{6} \\ $$$$\frac{\mathrm{1}−\mathrm{2}+\mathrm{384}}{\mathrm{64}}\:=\frac{\mathrm{383}}{\mathrm{64}} \\ $$

Answered by MJS last updated on 08/Jul/18

y=ax^2 +bx+c  zeros at x=−(b/(2a))±((√(b^2 −4ac))/(2a))  a>0 ⇒ min at x=−(b/(2a)); y=((−b^2 +4ac)/(4a^2 ))  a<0 ⇒ max at x=−(b/(2a)); y=((−b^2 +4ac)/(4a^2 ))  y=x^2 +px+q ⇒ min at x=−(p/2); y=((−p^2 +4q)/4)  zeros at x=−(p/2)±((√(p^2 −4q))/2)  y=−x^2 +px+q ⇒ max at x=(p/2); y=((p^2 +4q)/4)  zeros at x=(p/2)±((√(p^2 +4q))/2)

$${y}={ax}^{\mathrm{2}} +{bx}+{c} \\ $$$${zeros}\:{at}\:{x}=−\frac{{b}}{\mathrm{2}{a}}\pm\frac{\sqrt{{b}^{\mathrm{2}} −\mathrm{4}{ac}}}{\mathrm{2}{a}} \\ $$$${a}>\mathrm{0}\:\Rightarrow\:{min}\:{at}\:{x}=−\frac{{b}}{\mathrm{2}{a}};\:{y}=\frac{−{b}^{\mathrm{2}} +\mathrm{4}{ac}}{\mathrm{4}{a}^{\mathrm{2}} } \\ $$$${a}<\mathrm{0}\:\Rightarrow\:{max}\:{at}\:{x}=−\frac{{b}}{\mathrm{2}{a}};\:{y}=\frac{−{b}^{\mathrm{2}} +\mathrm{4}{ac}}{\mathrm{4}{a}^{\mathrm{2}} } \\ $$$${y}={x}^{\mathrm{2}} +{px}+{q}\:\Rightarrow\:{min}\:{at}\:{x}=−\frac{{p}}{\mathrm{2}};\:{y}=\frac{−{p}^{\mathrm{2}} +\mathrm{4}{q}}{\mathrm{4}} \\ $$$${zeros}\:{at}\:{x}=−\frac{{p}}{\mathrm{2}}\pm\frac{\sqrt{{p}^{\mathrm{2}} −\mathrm{4}{q}}}{\mathrm{2}} \\ $$$${y}=−{x}^{\mathrm{2}} +{px}+{q}\:\Rightarrow\:{max}\:{at}\:{x}=\frac{{p}}{\mathrm{2}};\:{y}=\frac{{p}^{\mathrm{2}} +\mathrm{4}{q}}{\mathrm{4}} \\ $$$${zeros}\:{at}\:{x}=\frac{{p}}{\mathrm{2}}\pm\frac{\sqrt{{p}^{\mathrm{2}} +\mathrm{4}{q}}}{\mathrm{2}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com