Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 39633 by abdo mathsup 649 cc last updated on 09/Jul/18

find the value of   f(x) = ∫_0 ^π ln(x^2  −2x cosθ +1)dθ  with x fromR.

findthevalueoff(x)=0πln(x22xcosθ+1)dθwithxfromR.

Commented by math khazana by abdo last updated on 09/Jul/18

we have  f^′ (x)= ∫_0 ^π    ((2x−2cosθ)/(x^(2 )  −2xcosθ +1))dθ  =_(θ=2t)    ∫_0 ^(2π)      ((2x−2cos(2t))/(x^2  −2xcos(2t) +1)) 2dt  = 4  ∫_0 ^(2π)    ((x−cos(2t))/(x^2   −2xcos(2t)+1))dt  changement  e^(it) =z give  f^′ (x)=4 ∫_(∣z∣=1)  ((x−((z^2  +z^(−2) )/2))/(x^2  −2x ((z^2  +z^(−2) )/2) +1)) (dz/(iz))  =4 ∫_(∣z∣=1)   ((2x−z^2  −z^(−2) )/(iz(x^2  −xz^2  −xz^(−2) +1)))dz  =4 ∫_(∣z∣=1)  ((2xz^2  −z^4  −1)/(iz(x^2  z^2  −x z^4  −x +z^2 )))dz  =−4i ∫_(∣z∣=1)   ((−z^4  +2xz^2  −1)/(z(−xz^4  +(1+x^2 )z^2  −x)))dz  =−4i ∫_(∣z∣=1)    ((z^4  −2xz^2  +1)/(z{xz^4  −(1+x^2 )z^2  +x}))dz  let ϕ(z) = ((z^4  −2xz^2  +1)/(z{ xz^4  −(1+x^2 )z^2  +x})) .poles of ϕ  roots of  xz^4  −(1+x^2 )z^2  +x   Δ =(1+x^2 )^2  −4x^2  =1+2x^2  +x^4  −4x^2   =1−2x^2  +x^4  =(1−x^2 )^2  ⇒  z^2  =((1+x^2  +∣1−x^2 ∣)/(2x))   and  z^2  =((1+x^2  −∣1−x^2 ∣)/(2x))  (we suppose that x≠0)  case 1  ∣x∣<1 ⇒z^2   =((1+x^2  +1−x^2 )/(2x)) = (1/x)  or z^2  =((1+x^2  −1+x^2 )/(2x)) =x  so if   0<x<1 we get  z =+^−  (1/(√x))  and  z =+^−  (√x)   ,0 are poles of ϕ  ϕ(z) =  ((z^4  −2xz^2  +1)/(xz( z−(1/(√x)))(z+(1/(√x)))(z−(√x))(z+(√x))))  ∫_(∣z∣=1)  ϕ(z)dz =2iπ { Res(ϕ,0) +Res(ϕ,(√x))  +Res(ϕ,−(√x))}  Res(ϕ,0) = (1/x)  Res(ϕ,(√x)) = ((x^2  −2x^2  +1)/(x(√x)(x−(1/x))2(√x))) =((1−x^2 )/(2x^2 (((x^2  −1)/x))))  = ((−1)/(2x))  Res(ϕ,−(√x)) =((x^2  −2x^2  +1)/(−x(√x)(x−(1/x))(−2(√x))))  =((1−x^2 )/(2x^2 (((x^2  −1)/x)))) =((−1)/(2x)) ⇒  ∫_(∣z∣=1) ϕ(z)dz =2iπ{ (1/x) −(1/(2x)) −(1/(2x))}=0 ⇒  f^′ (x) =0 ⇒ f(x)=c = f(0)=0 and we get the  same result if  −1<x<0  case 2  ∣x∣>1 we have  f(x) = ∫_0 ^π  ln(x^2 (1 −(2/x) cosθ  + (1/x^2 )))dθ  =2π ln∣x∣  + ∫_0 ^π   ln( X^2  −2X cosθ +1)dθ   =2π ln∣x∣ +0  because ∣X∣ = (1/(∣x∣))<1 ⇒  f(x) =2πln∣x∣ if  ∣x∣>1  and f(x)=0 if∣x∣<1 .

wehavef(x)=0π2x2cosθx22xcosθ+1dθ=θ=2t02π2x2cos(2t)x22xcos(2t)+12dt=402πxcos(2t)x22xcos(2t)+1dtchangementeit=zgivef(x)=4z∣=1xz2+z22x22xz2+z22+1dziz=4z∣=12xz2z2iz(x2xz2xz2+1)dz=4z∣=12xz2z41iz(x2z2xz4x+z2)dz=4iz∣=1z4+2xz21z(xz4+(1+x2)z2x)dz=4iz∣=1z42xz2+1z{xz4(1+x2)z2+x}dzletφ(z)=z42xz2+1z{xz4(1+x2)z2+x}.polesofφrootsofxz4(1+x2)z2+xΔ=(1+x2)24x2=1+2x2+x44x2=12x2+x4=(1x2)2z2=1+x2+1x22xandz2=1+x21x22x(wesupposethatx0)case1x∣<1z2=1+x2+1x22x=1xorz2=1+x21+x22x=xsoif0<x<1wegetz=+1xandz=+x,0arepolesofφφ(z)=z42xz2+1xz(z1x)(z+1x)(zx)(z+x)z∣=1φ(z)dz=2iπ{Res(φ,0)+Res(φ,x)+Res(φ,x)}Res(φ,0)=1xRes(φ,x)=x22x2+1xx(x1x)2x=1x22x2(x21x)=12xRes(φ,x)=x22x2+1xx(x1x)(2x)=1x22x2(x21x)=12xz∣=1φ(z)dz=2iπ{1x12x12x}=0f(x)=0f(x)=c=f(0)=0andwegetthesameresultif1<x<0case2x∣>1wehavef(x)=0πln(x2(12xcosθ+1x2))dθ=2πlnx+0πln(X22Xcosθ+1)dθ=2πlnx+0becauseX=1x<1f(x)=2πlnxifx∣>1andf(x)=0ifx∣<1.

Commented by tanmay.chaudhury50@gmail.com last updated on 09/Jul/18

x^2 −2xcosθ+1  (x−cosθ)^2 +sin^2 θ  (x−cosθ+isinθ)(x−cosθ−isinθ)  (x−e^(−iθ) )(x−e^(iθ) )  f(x)=∫_0 ^Π {ln(x−e^(−iθ) )+ln(x−e^(iθ) )}dθ  (dI/dx)=∫_0 ^Π (1/(x−e^(−iθ) ))+(1/(x−e^(iθ) ))  dθ  =∫_0 ^Π (e^(iθ) /(xe^(iθ) −1))dθ+∫_0 ^Π (e^(−iθ) /(xe^(−iθ) −1))dθ  =(1/x)∫_0 ^Π (e^(iθ) /(e^(iθ) −(1/x)))dθ+(1/x)∫_0 ^Π (e^(−iθ) /(e^(−iθ) −(1/x)))dθ  =∣(1/(ix))ln(e^(iθ) −(1/x))+(1/(−ix))ln(e^(−iθ) −(1/x))∣_0 ^Π   =(1/(ix))∣ln(((e^(iθ) −(1/x))/(e^(−iθ) −(1/x))))∣_0 ^Π    e^(iΠ) =cosΠ+isinΠ=−1  (1/(ix)){ln(((−1−(1/x))/(−1−(1/x))))−ln(((1−(1/x))/(1−(1/x))))}=0  (dI/dx)=0  I=constant  pls check my steps...whether any mistake...

x22xcosθ+1(xcosθ)2+sin2θ(xcosθ+isinθ)(xcosθisinθ)(xeiθ)(xeiθ)f(x)=0Π{ln(xeiθ)+ln(xeiθ)}dθdIdx=0Π1xeiθ+1xeiθdθ=0Πeiθxeiθ1dθ+0Πeiθxeiθ1dθ=1x0Πeiθeiθ1xdθ+1x0Πeiθeiθ1xdθ=∣1ixln(eiθ1x)+1ixln(eiθ1x)0Π=1ixln(eiθ1xeiθ1x)0ΠeiΠ=cosΠ+isinΠ=11ix{ln(11x11x)ln(11x11x)}=0dIdx=0I=constantplscheckmysteps...whetheranymistake...

Commented by maxmathsup by imad last updated on 09/Jul/18

sir Tanmay  the function ln  at  C is not like ln at  R  look  ln(−1)in R  don t exist but  in  C ln(−1)=ln(e^(iπ) )=iπ  so you have commited a error  in the final lines  you must extract  Re (∫) and Im( ∫) to have a correct  answer ...

sirTanmaythefunctionlnatCisnotlikelnatRlookln(1)inRdontexistbutinCln(1)=ln(eiπ)=iπsoyouhavecommitedaerrorinthefinallinesyoumustextractRe()andIm()tohaveacorrectanswer...

Terms of Service

Privacy Policy

Contact: info@tinkutara.com