Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 39635 by math khazana by abdo last updated on 09/Jul/18

calculate  lim_(x→1)  ((1+cos(πx))/(x^2 − sin(((πx)/2))))

calculatelimx11+cos(πx)x2sin(πx2)

Commented by abdo mathsup 649 cc last updated on 09/Jul/18

changement  x−1=t give t→0 whenx→1 and  ((1+cos(πx))/(x^2 −sin(((πx)/2)))) = ((1+cos(π(1+t)))/((1+t^ )^2  −sin(((π(1+t))/2))))  =((1−cost)/(1+t^2  +2t  −cos(((πt)/2))))=A(t) but  1−cost ∼ (t^2 /2)  and 1−cos(((πt)/2)) ∼ ((π^2 t^2 )/8) (t→0)⇒  A(t) ∼((t^2 /2)/(t^2  +2t +((π^2 t^2 )/8))) =  (t/(2(t+2 +((π^2 t)/8)))) _(t→0) →0  ⇒lim_(x→1)    ((1+cos(πx))/(x^2  −sin(((πx)/2)))) =0

changementx1=tgivet0whenx1and1+cos(πx)x2sin(πx2)=1+cos(π(1+t))(1+t)2sin(π(1+t)2)=1cost1+t2+2tcos(πt2)=A(t)but1costt22and1cos(πt2)π2t28(t0)A(t)t22t2+2t+π2t28=t2(t+2+π2t8)t00limx11+cos(πx)x2sin(πx2)=0

Answered by tanmay.chaudhury50@gmail.com last updated on 09/Jul/18

t=1−x  lim_(t→0) ((1+cos{Π(1−t)})/((1−t)^2 −sin{((Π(1−t))/2)}))  lim_(t→0) ((1−cos(Πt))/((1−t)^2 −cos((Πt)/2)))  lim_(t→0)  ((2sin^2 ((Πt)/2))/(1−2t+t^2 −cos((Πt)/2)))  lim_(t→0)  ((2sin^2 ((Πt)/2))/(2sin^2 ((Πt)/2)+t^2 −2t))  lim_(t→0) ((2×((sin(((Πt)/2))×sin(((Πt)/2)))/(((Πt)/2)×((Πt)/2)))×(Π^2 /4))/(2×((sin(((Πt)/2))×sin(((Πt)/2)))/(((Πt)/2)×((Πt)/2)))×(Π^2 /4)+1−(2/t)))  lim_(t→0) ((Π^2 /2)/((Π^2 /2)+1−∞))=0  pls check...

t=1xlimt01+cos{Π(1t)}(1t)2sin{Π(1t)2}limt01cos(Πt)(1t)2cosΠt2limt02sin2Πt212t+t2cosΠt2limt02sin2Πt22sin2Πt2+t22tlimt02×sin(Πt2)×sin(Πt2)Πt2×Πt2×242×sin(Πt2)×sin(Πt2)Πt2×Πt2×24+12tlimt02222+1=0plscheck...

Terms of Service

Privacy Policy

Contact: info@tinkutara.com