Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 39636 by math khazana by abdo last updated on 09/Jul/18

let P_α (x) =x^3   +2α x −3  1) determine the roots of P_α   2) determine the roots of  P_(−1)

letPα(x)=x3+2αx31)determinetherootsofPα2)determinetherootsofP1

Answered by ajfour last updated on 09/Jul/18

let  x= u+v  ⇒  (u+v)^3 +2α(u+v)−3=0  ⇒ u^3 +v^3 +(u+v)(3uv+2α)−3=0    Further let (we can..) that         3uv+2α = 0  ⇒   u^3 v^3  = −((8α^3 )/(27))      Then     u^3 +v^3  = 3      u^3 , v^3  are then roots of eq.          z^2 −3z−((8α^3 )/(27)) = 0  ⇒   u^3 , v^3  = ((3±(√(9+((32α^3 )/(27)))))/2)  As         x = u+v  ⇒  x(α) = (((3/2)+(√((9/4)+((8α^3 )/(27))))))^(1/3)                       +(((3/2)−(√((9/4)+((8α^3 )/(27))))))^(1/3)        x∣_(α=−1)  = (((3/2)+(√((211)/(108)))))^(1/3)                              +(((3/2)−(√((211)/(108)))))^(1/3)   .

letx=u+v(u+v)3+2α(u+v)3=0u3+v3+(u+v)(3uv+2α)3=0Furtherlet(wecan..)that3uv+2α=0u3v3=8α327Thenu3+v3=3u3,v3arethenrootsofeq.z23z8α327=0u3,v3=3±9+32α3272Asx=u+vx(α)=32+94+8α3273+3294+8α3273xα=1=32+2111083+322111083.

Commented by MrW3 last updated on 09/Jul/18

Ajfour sir is now also a specalist for  cubic equations, on side of MJS sir.

Ajfoursirisnowalsoaspecalistforcubicequations,onsideofMJSsir.

Commented by ajfour last updated on 09/Jul/18

You taught me how, sometime back..

Youtaughtmehow,sometimeback..

Terms of Service

Privacy Policy

Contact: info@tinkutara.com