Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 39660 by abdo mathsup 649 cc last updated on 09/Jul/18

let  S_n   = ∫_0 ^n      ((x(−1)^([x]) )/((x+1 −[x])^3 ))dx  1) calculate  S_n   2) find lim_(n→+∞)   S_n

letSn=0nx(1)[x](x+1[x])3dx1)calculateSn2)findlimn+Sn

Commented by maxmathsup by imad last updated on 11/Jul/18

1) S_n = Σ_(k=0) ^(n−1)   ∫_k ^(k+1)    ((x(−1)^k )/((x+1−k)^3 ))dx=Σ_(k=0) ^(n−1)  (−1)^k  ∫_k ^(k+1)   (x/((x+1−k)^3 ))dx but  ∫_k ^(k+1)     (x/((x+1−k)^2 ))dx = ∫_k ^(k+1)  ((x+1 −k  +k−1)/((x+1−k)^2 ))dx  =∫_k ^(k+1)  (dx/(x+1−k))  +(k−1)[−(1/(x+1−k))]_k ^(k+1)   =[ln∣x+1−k∣]_k ^(k+1)   +(k−1) {1 −(1/2)}=ln(2) +(1/2)(k−1)  S_n = Σ_(k=0) ^(n−1) (−1)^k  {ln(2) +(1/2)(k−1)}  =ln(2) Σ_(k=0) ^(n−1)  (−1)^k   +(1/2) Σ_(k=0) ^(n−1) (−1)^k (k−1)  but we have  Σ_(k=0) ^(n−1) (−1)^k  =((1−(−1)^n )/2)  Σ_(k=0) ^(n−1) (−1)^k (k−1)^  =−1 +Σ_(k=1) ^(n−1) (−1)^k (k−1)  =−1 +Σ_(k=0) ^(n−2) (−1)^(k+1) k =−1  −Σ_(k=0) ^(n−2)  k(−1)^k  =−1−Σ_(k=1) ^(n−2) k(−1)^k   Σ_(k=0) ^N  x^k  =((x^(N+1) −1)/(x−1)) ⇒Σ_(k=1) ^N  k x^(k−1)   =((Nx^(N+1) −(N+1)x^n  +1)/((x−1)^2 )) ⇒  Σ_(k=1) ^N  k x^k   =(x/((x−1)^2 )){ Nx^(N+1) −(N+1)x^N  +1} ⇒  Σ_(k=1) ^(n−2)  k(−1)^k  = ((−1)/4){(n−2)(−1)^(n−1) −(n−1)(−1)^(n−2)  +1} ⇒  S_n =((ln(2))/2){1−(−1)^n } +(1/2){ −1  +(1/4){(n−2)(−1)^(n−1)  −(n−1)(−1)^(n−2)  +1}}

1)Sn=k=0n1kk+1x(1)k(x+1k)3dx=k=0n1(1)kkk+1x(x+1k)3dxbutkk+1x(x+1k)2dx=kk+1x+1k+k1(x+1k)2dx=kk+1dxx+1k+(k1)[1x+1k]kk+1=[lnx+1k]kk+1+(k1){112}=ln(2)+12(k1)Sn=k=0n1(1)k{ln(2)+12(k1)}=ln(2)k=0n1(1)k+12k=0n1(1)k(k1)butwehavek=0n1(1)k=1(1)n2k=0n1(1)k(k1)=1+k=1n1(1)k(k1)=1+k=0n2(1)k+1k=1k=0n2k(1)k=1k=1n2k(1)kk=0Nxk=xN+11x1k=1Nkxk1=NxN+1(N+1)xn+1(x1)2k=1Nkxk=x(x1)2{NxN+1(N+1)xN+1}k=1n2k(1)k=14{(n2)(1)n1(n1)(1)n2+1}Sn=ln(2)2{1(1)n}+12{1+14{(n2)(1)n1(n1)(1)n2+1}}

Commented by maxmathsup by imad last updated on 11/Jul/18

2) we have  S_(2n) =−(1/2) +(1/8){−(2n−2)−(2n−1) +1)}  =−(1/2) +(1/8){−4n +4} =(1/2) +(1/2){−n+1}=1−(n/2)  S_(2n+1)   =ln(2) +(1/2){ −1 +(1/4)((2n−1)−(2n)(−1) +1)}  =ln(2) +(1/2){−1 +(1/4)(4n +2)} and its clear that (S_n ) is not convergent!

2)wehaveS2n=12+18{(2n2)(2n1)+1)}=12+18{4n+4}=12+12{n+1}=1n2S2n+1=ln(2)+12{1+14((2n1)(2n)(1)+1)}=ln(2)+12{1+14(4n+2)}anditsclearthat(Sn)isnotconvergent!

Terms of Service

Privacy Policy

Contact: info@tinkutara.com