All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 39711 by math khazana by abdo last updated on 10/Jul/18
calculate∫−∞+∞xn(1+x2)ndxwithnnatralintegr
Commented by maxmathsup by imad last updated on 11/Jul/18
letAn=∫−∞+∞xndx(1+x2)nandletφ(z)=zn(1+z2)nφ(z)=zn(z−i)n(z+i)n∫−∞+∞φ(z)dz=2iπRes(φ,i)butRes(φ,i)=limz→i1(n−1)!{(z−i)nφ(z)}(n−1)=limz→i1(n−1)!{xn(z+i)−n}(n−1)and{xn(z+i)−n}(n−1)=∑k=0n−1Cn−1k{(z+i)−n}(k)(xn)(n−1−k)but(z+i)−n}(k)=(−1)kn(n+1)...(n+k−1)(z+i)−n−k(xn)(p)=n(n−1)...(n−p+1)xn−p⇒(xn)(n−1−k)=n(n−1)...(k+2)xk+1⇒Res(φ,i)=1(n−1)!∑k=0n−1Cn−1k(−1)kn(n+1)...(n+k−1)(2i)−n−k(n−1)...(k+2)ik+1An=2iπRes(φ,i)
Terms of Service
Privacy Policy
Contact: info@tinkutara.com