Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 39711 by math khazana by abdo last updated on 10/Jul/18

calculate  ∫_(−∞) ^(+∞)    (x^n /((1+x^2 )^n )) dx with n natral integr

$${calculate}\:\:\int_{−\infty} ^{+\infty} \:\:\:\frac{{x}^{{n}} }{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)^{{n}} }\:{dx}\:{with}\:{n}\:{natral}\:{integr} \\ $$

Commented by maxmathsup by imad last updated on 11/Jul/18

let A_n = ∫_(−∞) ^(+∞)     ((x^n dx)/((1+x^2 )^n ))    and let ϕ(z)=(z^n /((1+z^2 )^n ))  ϕ(z) = (z^n /((z−i)^n (z+i)^n ))  ∫_(−∞) ^(+∞)  ϕ(z)dz=2iπ Res(ϕ,i)  but  Res(ϕ,i)=lim_(z→i)   (1/((n−1)!)){(z−i)^n ϕ(z)}^((n−1))   =lim_(z→i)    (1/((n−1)!))  {  x^n (z+i)^(−n) }^((n−1))   and  { x^n (z+i)^(−n) }^((n−1)) =Σ_(k=0) ^(n−1)   C_(n−1) ^k  {(z+i)^(−n) }^((k))   (x^n )^((n−1−k))   but  (z+i)^(−n) }^((k)) =(−1)^k n(n+1)...(n+k−1)(z+i)^(−n−k)   (x^n )^((p)) =n(n−1)...(n−p+1)x^(n−p) ⇒(x^n )^((n−1−k)) =n(n−1)...(k+2)x^(k+1)  ⇒  Res(ϕ,i) = (1/((n−1)!)) Σ_(k=0) ^(n−1)   C_(n−1) ^k  (−1)^k n(n+1)...(n+k−1)(2i)^(−n−k)  (n−1)...(k+2)i^(k+1)   A_n =2iπ Res(ϕ,i)

$${let}\:{A}_{{n}} =\:\int_{−\infty} ^{+\infty} \:\:\:\:\frac{{x}^{{n}} {dx}}{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)^{{n}} }\:\:\:\:{and}\:{let}\:\varphi\left({z}\right)=\frac{{z}^{{n}} }{\left(\mathrm{1}+{z}^{\mathrm{2}} \right)^{{n}} } \\ $$$$\varphi\left({z}\right)\:=\:\frac{{z}^{{n}} }{\left({z}−{i}\right)^{{n}} \left({z}+{i}\right)^{{n}} } \\ $$$$\int_{−\infty} ^{+\infty} \:\varphi\left({z}\right){dz}=\mathrm{2}{i}\pi\:{Res}\left(\varphi,{i}\right)\:\:{but} \\ $$$${Res}\left(\varphi,{i}\right)={lim}_{{z}\rightarrow{i}} \:\:\frac{\mathrm{1}}{\left({n}−\mathrm{1}\right)!}\left\{\left({z}−{i}\right)^{{n}} \varphi\left({z}\right)\right\}^{\left({n}−\mathrm{1}\right)} \\ $$$$={lim}_{{z}\rightarrow{i}} \:\:\:\frac{\mathrm{1}}{\left({n}−\mathrm{1}\right)!}\:\:\left\{\:\:{x}^{{n}} \left({z}+{i}\right)^{−{n}} \right\}^{\left({n}−\mathrm{1}\right)} \:\:{and} \\ $$$$\left\{\:{x}^{{n}} \left({z}+{i}\right)^{−{n}} \right\}^{\left({n}−\mathrm{1}\right)} =\sum_{{k}=\mathrm{0}} ^{{n}−\mathrm{1}} \:\:{C}_{{n}−\mathrm{1}} ^{{k}} \:\left\{\left({z}+{i}\right)^{−{n}} \right\}^{\left({k}\right)} \:\:\left({x}^{{n}} \right)^{\left({n}−\mathrm{1}−{k}\right)} \:\:{but} \\ $$$$\left.\left({z}+{i}\right)^{−{n}} \right\}^{\left({k}\right)} =\left(−\mathrm{1}\right)^{{k}} {n}\left({n}+\mathrm{1}\right)...\left({n}+{k}−\mathrm{1}\right)\left({z}+{i}\right)^{−{n}−{k}} \\ $$$$\left({x}^{{n}} \right)^{\left({p}\right)} ={n}\left({n}−\mathrm{1}\right)...\left({n}−{p}+\mathrm{1}\right){x}^{{n}−{p}} \Rightarrow\left({x}^{{n}} \right)^{\left({n}−\mathrm{1}−{k}\right)} ={n}\left({n}−\mathrm{1}\right)...\left({k}+\mathrm{2}\right){x}^{{k}+\mathrm{1}} \:\Rightarrow \\ $$$${Res}\left(\varphi,{i}\right)\:=\:\frac{\mathrm{1}}{\left({n}−\mathrm{1}\right)!}\:\sum_{{k}=\mathrm{0}} ^{{n}−\mathrm{1}} \:\:{C}_{{n}−\mathrm{1}} ^{{k}} \:\left(−\mathrm{1}\right)^{{k}} {n}\left({n}+\mathrm{1}\right)...\left({n}+{k}−\mathrm{1}\right)\left(\mathrm{2}{i}\right)^{−{n}−{k}} \:\left({n}−\mathrm{1}\right)...\left({k}+\mathrm{2}\right){i}^{{k}+\mathrm{1}} \\ $$$${A}_{{n}} =\mathrm{2}{i}\pi\:{Res}\left(\varphi,{i}\right) \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com