Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 39779 by ajfour last updated on 10/Jul/18

f(x)=x^4 −2x^3 +3x^2 −4x+5  Find the roots.

$${f}\left({x}\right)={x}^{\mathrm{4}} −\mathrm{2}{x}^{\mathrm{3}} +\mathrm{3}{x}^{\mathrm{2}} −\mathrm{4}{x}+\mathrm{5} \\ $$$${Find}\:{the}\:{roots}. \\ $$

Answered by MJS last updated on 11/Jul/18

approximate:  x_1 =−.287815−1.41609i  x_2 =−.287815+1.41609i  x_3 =1.28782−.857897i  x_4 =1.28782+.857897i  exact:  the usual procedure, but we have two pairs  of conjugated complex solutions  f(x)=(x−α−(√β)i)(x−α+(√β)i)(x−γ−(√δ)i)(x−γ+(√δ)i)  ⇒ α=1−γ        β=((γ(2γ^2 −3γ+3))/(2γ−1))        δ=(((γ−1)(2γ^2 −γ+2))/(2γ−1))  γ^6 −3γ^5 +(9/2)γ^4 −4γ^3 +((21)/(16))γ^2 +(3/(16))γ−(3/(16))=0  γ=u+(1/2)  u^6 +(3/4)u^4 −(3/4)u^2 −(1/(16))=0  u=(√v)  v^3 +(3/4)v^2 −(3/4)v−(1/(16))=0  v=w−(1/4)  w^3 −((15)/(16))w+(5/(32))=0  this has got 3 real solutions, so we need the  trigonometric method.  w_k =2(√(−(p/3)))sin((1/3)(arcsin(((9q)/(2p^2 ))(√(−(p/3))))+2kπ)) with k=0, 1, 2  p=−((15)/(16)); q=(5/(32))  w_0 =((√5)/2)sin((1/3)arcsin ((√5)/5))  w_1 =((√5)/2)cos((π/6)+(1/3)arcsin ((√5)/5))  w_2 =−((√5)/2)sin((π/3)+(1/3)arcsin ((√5)/5))  again the way back is hard if you want  exact solutions. all three w_k  lead to the  same set of α, β, γ, δ but I recommend to  take w_1  to get real values in each step back.

$$\mathrm{approximate}: \\ $$$${x}_{\mathrm{1}} =−.\mathrm{287815}−\mathrm{1}.\mathrm{41609i} \\ $$$${x}_{\mathrm{2}} =−.\mathrm{287815}+\mathrm{1}.\mathrm{41609i} \\ $$$${x}_{\mathrm{3}} =\mathrm{1}.\mathrm{28782}−.\mathrm{857897i} \\ $$$${x}_{\mathrm{4}} =\mathrm{1}.\mathrm{28782}+.\mathrm{857897i} \\ $$$$\mathrm{exact}: \\ $$$$\mathrm{the}\:\mathrm{usual}\:\mathrm{procedure},\:\mathrm{but}\:\mathrm{we}\:\mathrm{have}\:\mathrm{two}\:\mathrm{pairs} \\ $$$$\mathrm{of}\:\mathrm{conjugated}\:\mathrm{complex}\:\mathrm{solutions} \\ $$$${f}\left({x}\right)=\left({x}−\alpha−\sqrt{\beta}\mathrm{i}\right)\left({x}−\alpha+\sqrt{\beta}\mathrm{i}\right)\left({x}−\gamma−\sqrt{\delta}\mathrm{i}\right)\left({x}−\gamma+\sqrt{\delta}\mathrm{i}\right) \\ $$$$\Rightarrow\:\alpha=\mathrm{1}−\gamma \\ $$$$\:\:\:\:\:\:\beta=\frac{\gamma\left(\mathrm{2}\gamma^{\mathrm{2}} −\mathrm{3}\gamma+\mathrm{3}\right)}{\mathrm{2}\gamma−\mathrm{1}} \\ $$$$\:\:\:\:\:\:\delta=\frac{\left(\gamma−\mathrm{1}\right)\left(\mathrm{2}\gamma^{\mathrm{2}} −\gamma+\mathrm{2}\right)}{\mathrm{2}\gamma−\mathrm{1}} \\ $$$$\gamma^{\mathrm{6}} −\mathrm{3}\gamma^{\mathrm{5}} +\frac{\mathrm{9}}{\mathrm{2}}\gamma^{\mathrm{4}} −\mathrm{4}\gamma^{\mathrm{3}} +\frac{\mathrm{21}}{\mathrm{16}}\gamma^{\mathrm{2}} +\frac{\mathrm{3}}{\mathrm{16}}\gamma−\frac{\mathrm{3}}{\mathrm{16}}=\mathrm{0} \\ $$$$\gamma={u}+\frac{\mathrm{1}}{\mathrm{2}} \\ $$$${u}^{\mathrm{6}} +\frac{\mathrm{3}}{\mathrm{4}}{u}^{\mathrm{4}} −\frac{\mathrm{3}}{\mathrm{4}}{u}^{\mathrm{2}} −\frac{\mathrm{1}}{\mathrm{16}}=\mathrm{0} \\ $$$${u}=\sqrt{{v}} \\ $$$${v}^{\mathrm{3}} +\frac{\mathrm{3}}{\mathrm{4}}{v}^{\mathrm{2}} −\frac{\mathrm{3}}{\mathrm{4}}{v}−\frac{\mathrm{1}}{\mathrm{16}}=\mathrm{0} \\ $$$${v}={w}−\frac{\mathrm{1}}{\mathrm{4}} \\ $$$${w}^{\mathrm{3}} −\frac{\mathrm{15}}{\mathrm{16}}{w}+\frac{\mathrm{5}}{\mathrm{32}}=\mathrm{0} \\ $$$$\mathrm{this}\:\mathrm{has}\:\mathrm{got}\:\mathrm{3}\:\mathrm{real}\:\mathrm{solutions},\:\mathrm{so}\:\mathrm{we}\:\mathrm{need}\:\mathrm{the} \\ $$$$\mathrm{trigonometric}\:\mathrm{method}. \\ $$$${w}_{{k}} =\mathrm{2}\sqrt{−\frac{{p}}{\mathrm{3}}}\mathrm{sin}\left(\frac{\mathrm{1}}{\mathrm{3}}\left(\mathrm{arcsin}\left(\frac{\mathrm{9}{q}}{\mathrm{2}{p}^{\mathrm{2}} }\sqrt{−\frac{{p}}{\mathrm{3}}}\right)+\mathrm{2}{k}\pi\right)\right)\:\mathrm{with}\:{k}=\mathrm{0},\:\mathrm{1},\:\mathrm{2} \\ $$$${p}=−\frac{\mathrm{15}}{\mathrm{16}};\:{q}=\frac{\mathrm{5}}{\mathrm{32}} \\ $$$${w}_{\mathrm{0}} =\frac{\sqrt{\mathrm{5}}}{\mathrm{2}}\mathrm{sin}\left(\frac{\mathrm{1}}{\mathrm{3}}\mathrm{arcsin}\:\frac{\sqrt{\mathrm{5}}}{\mathrm{5}}\right) \\ $$$${w}_{\mathrm{1}} =\frac{\sqrt{\mathrm{5}}}{\mathrm{2}}\mathrm{cos}\left(\frac{\pi}{\mathrm{6}}+\frac{\mathrm{1}}{\mathrm{3}}\mathrm{arcsin}\:\frac{\sqrt{\mathrm{5}}}{\mathrm{5}}\right) \\ $$$${w}_{\mathrm{2}} =−\frac{\sqrt{\mathrm{5}}}{\mathrm{2}}\mathrm{sin}\left(\frac{\pi}{\mathrm{3}}+\frac{\mathrm{1}}{\mathrm{3}}\mathrm{arcsin}\:\frac{\sqrt{\mathrm{5}}}{\mathrm{5}}\right) \\ $$$$\mathrm{again}\:\mathrm{the}\:\mathrm{way}\:\mathrm{back}\:\mathrm{is}\:\mathrm{hard}\:\mathrm{if}\:\mathrm{you}\:\mathrm{want} \\ $$$$\mathrm{exact}\:\mathrm{solutions}.\:\mathrm{all}\:\mathrm{three}\:{w}_{{k}} \:\mathrm{lead}\:\mathrm{to}\:\mathrm{the} \\ $$$$\mathrm{same}\:\mathrm{set}\:\mathrm{of}\:\alpha,\:\beta,\:\gamma,\:\delta\:\mathrm{but}\:\mathrm{I}\:\mathrm{recommend}\:\mathrm{to} \\ $$$$\mathrm{take}\:{w}_{\mathrm{1}} \:\mathrm{to}\:\mathrm{get}\:\mathrm{real}\:\mathrm{values}\:\mathrm{in}\:\mathrm{each}\:\mathrm{step}\:\mathrm{back}. \\ $$

Commented by MJS last updated on 10/Jul/18

Ferrari is very complicated sometimes but  yes, it always gives all solutions. Still the  problem witb the 3 real solutions occurs...

$$\mathrm{Ferrari}\:\mathrm{is}\:\mathrm{very}\:\mathrm{complicated}\:\mathrm{sometimes}\:\mathrm{but} \\ $$$$\mathrm{yes},\:\mathrm{it}\:\mathrm{always}\:\mathrm{gives}\:\mathrm{all}\:\mathrm{solutions}.\:\mathrm{Still}\:\mathrm{the} \\ $$$$\mathrm{problem}\:\mathrm{witb}\:\mathrm{the}\:\mathrm{3}\:\mathrm{real}\:\mathrm{solutions}\:\mathrm{occurs}... \\ $$

Commented by ajfour last updated on 10/Jul/18

I read a little of Ferrari′s solution.

$${I}\:{read}\:{a}\:{little}\:{of}\:{Ferrari}'{s}\:{solution}. \\ $$

Commented by ajfour last updated on 11/Jul/18

Thanks for this much,Sir.  Whats the trigonometric way  for our cubic eq. ?

$${Thanks}\:{for}\:{this}\:{much},{Sir}. \\ $$$${Whats}\:{the}\:{trigonometric}\:{way} \\ $$$${for}\:{our}\:{cubic}\:{eq}.\:? \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com