Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 39787 by abdo mathsup 649 cc last updated on 10/Jul/18

calculste  I_λ  = ∫_(−∞) ^(+∞)   ((cos(λx^n ))/(1+x^2 )) dx  with  λ from R and n integr natural  2) find the vslue of  ∫_(−∞) ^(+∞)   ((cos(3 x^9 ))/(1+x^2 )) dx .

$${calculste}\:\:{I}_{\lambda} \:=\:\int_{−\infty} ^{+\infty} \:\:\frac{{cos}\left(\lambda{x}^{{n}} \right)}{\mathrm{1}+{x}^{\mathrm{2}} }\:{dx}\:\:{with} \\ $$$$\lambda\:{from}\:{R}\:{and}\:{n}\:{integr}\:{natural} \\ $$$$\left.\mathrm{2}\right)\:{find}\:{the}\:{vslue}\:{of}\:\:\int_{−\infty} ^{+\infty} \:\:\frac{{cos}\left(\mathrm{3}\:{x}^{\mathrm{9}} \right)}{\mathrm{1}+{x}^{\mathrm{2}} }\:{dx}\:. \\ $$

Commented by abdo mathsup 649 cc last updated on 11/Jul/18

1)  we have I_λ = Re( ∫_(−∞) ^(+∞)   (e^(iλx^n ) /(1+x^2 ))dx)  let  ϕ(z) = (e^(iλz^n ) /(1+z^2 ))  ϕ(z)= (e^(iλz^n ) /((z−i)(z+i))) ⇒  ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ Res(ϕ,i)  Res(ϕ,i) =lim_(z→i) (z−i)ϕ(z)  =lim_(z→i)  (e^(iλz^n ) /(z+i)) = (e^(λ i^(n+1) ) /(2i)) =(e^(λ{cos((((n+1)π)/2) +isin((((n+1)π)/2))}) /(2i))  ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ e^(λcos((((n+1)π)/2))) ((cos)(λsin((((n+1)π)/2)))  +isin(λsin((((n+1)π)/2))))/(2i))  ⇒I_λ = π  e^(λ cos((((n+1)π)/2)))  cos{λsin((((n+1)π)/2))} .

$$\left.\mathrm{1}\right)\:\:{we}\:{have}\:{I}_{\lambda} =\:{Re}\left(\:\int_{−\infty} ^{+\infty} \:\:\frac{{e}^{{i}\lambda{x}^{{n}} } }{\mathrm{1}+{x}^{\mathrm{2}} }{dx}\right)\:\:{let} \\ $$$$\varphi\left({z}\right)\:=\:\frac{{e}^{{i}\lambda{z}^{{n}} } }{\mathrm{1}+{z}^{\mathrm{2}} } \\ $$$$\varphi\left({z}\right)=\:\frac{{e}^{{i}\lambda{z}^{{n}} } }{\left({z}−{i}\right)\left({z}+{i}\right)}\:\Rightarrow \\ $$$$\int_{−\infty} ^{+\infty} \:\varphi\left({z}\right){dz}\:=\mathrm{2}{i}\pi\:{Res}\left(\varphi,{i}\right) \\ $$$${Res}\left(\varphi,{i}\right)\:={lim}_{{z}\rightarrow{i}} \left({z}−{i}\right)\varphi\left({z}\right) \\ $$$$={lim}_{{z}\rightarrow{i}} \:\frac{{e}^{{i}\lambda{z}^{{n}} } }{{z}+{i}}\:=\:\frac{{e}^{\lambda\:{i}^{{n}+\mathrm{1}} } }{\mathrm{2}{i}}\:=\frac{{e}^{\lambda\left\{{cos}\left(\frac{\left({n}+\mathrm{1}\right)\pi}{\mathrm{2}}\:+{isin}\left(\frac{\left({n}+\mathrm{1}\right)\pi}{\mathrm{2}}\right)\right\}\right.} }{\mathrm{2}{i}} \\ $$$$\int_{−\infty} ^{+\infty} \:\varphi\left({z}\right){dz}\:=\mathrm{2}{i}\pi\:{e}^{\lambda{cos}\left(\frac{\left({n}+\mathrm{1}\right)\pi}{\mathrm{2}}\right)} \frac{\left.{cos}\right)\left(\lambda{sin}\left(\frac{\left({n}+\mathrm{1}\right)\pi}{\mathrm{2}}\right)\right)\:\:+{isin}\left(\lambda{sin}\left(\frac{\left({n}+\mathrm{1}\right)\pi}{\mathrm{2}}\right)\right)}{\mathrm{2}{i}} \\ $$$$\Rightarrow{I}_{\lambda} =\:\pi\:\:{e}^{\lambda\:{cos}\left(\frac{\left({n}+\mathrm{1}\right)\pi}{\mathrm{2}}\right)} \:{cos}\left\{\lambda{sin}\left(\frac{\left({n}+\mathrm{1}\right)\pi}{\mathrm{2}}\right)\right\}\:. \\ $$

Commented by math khazana by abdo last updated on 12/Jul/18

2) let take λ=3 and n=9 we get  ∫_(−∞) ^(+∞)    ((cos(3x^9 ))/(1+x^2 ))dx =πe^(3cos(5π))  cos{3 sin(5π)}  = π e^(−3)   =(π/e^3 )  .

$$\left.\mathrm{2}\right)\:{let}\:{take}\:\lambda=\mathrm{3}\:{and}\:{n}=\mathrm{9}\:{we}\:{get} \\ $$$$\int_{−\infty} ^{+\infty} \:\:\:\frac{{cos}\left(\mathrm{3}{x}^{\mathrm{9}} \right)}{\mathrm{1}+{x}^{\mathrm{2}} }{dx}\:=\pi{e}^{\mathrm{3}{cos}\left(\mathrm{5}\pi\right)} \:{cos}\left\{\mathrm{3}\:{sin}\left(\mathrm{5}\pi\right)\right\} \\ $$$$=\:\pi\:{e}^{−\mathrm{3}} \:\:=\frac{\pi}{{e}^{\mathrm{3}} }\:\:. \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com