Question and Answers Forum

All Questions      Topic List

Mensuration Questions

Previous in All Question      Next in All Question      

Previous in Mensuration      Next in Mensuration      

Question Number 39811 by ajfour last updated on 11/Jul/18

Commented by ajfour last updated on 11/Jul/18

The outer frame is a unit square.  Find areas of red, green, and  blue regions in terms of α.

Theouterframeisaunitsquare.Findareasofred,green,andblueregionsintermsofα.

Answered by MrW3 last updated on 11/Jul/18

tan β=((1−1×tan α)/1)=1−tan α  ⇒β=tan^(−1) (1−tan α)  ⇒sin β=((1−tan α)/(√(1+(1−tan α)^2 )))  ⇒cos β=(1/(√(1+(1−tan α)^2 )))    side length of blue square:  1×tan α×cos β=((tan α)/(√(1+(1−tan α)^2 )))  ⇒A_(Blue) =((tan^2  α)/(1+(1−tan α)^2 ))    Red triangle:  side a=1×sin α  side b with  (b/(sin α))=(1/(sin (α+β)))  ⇒b=((1×sin α)/(sin (α+β)))=((sin α (√(1+(1−tan α)^2 )))/(sin α +cos α (1−tan α)))=tan α (√(1+(1−tan α)^2 ))  ⇒A_(Red) =(1/2)×sin α×tan α (√(1+(1−tan α)^2 ))×cos (α+β)  (1/2)×sin α×tan α×[cos α−sin α (1−tan α)]  ⇒A_(Red) =(((2−sin 2α) tan^2  α)/4)    Green triangle:  side c with  c=1×sin β−b=((1−tan α)/(√(1+(1−tan α)^2 )))−tan α (√(1+(1−tan α)^2 ))  =((1−tan α−tan α [1+(1−tan α)^2 ])/(√(1+(1−tan α)^2 )))  =((1−2tan α−tan α(1−tan α)^2 )/(√(1+(1−tan α)^2 )))  side d with  d=c tan γ=c tan (α+β)=c ((tan α+(1−tan α))/(1−tan α(1−tan α)))  =((1−2tan α−tan α(1−tan α)^2 )/((1−tan α+tan^2  α)(√(1+(1−tan α)^2 ))))  A_(Green) =((cd)/2)=(1/2)×((1−tan α−tan α [1+(1−tan α)^2 ])/(√(1+(1−tan α)^2 )))×((1−2tan α−tan α(1−tan α)^2 )/((1−tan α+tan^2  α)(√(1+(1−tan α)^2 ))))  ⇒A_(Green) =(([1−2tan α−tan α(1−tan α)^2 ]^2 )/(2(1−tan α+tan^2  α)[1+(1−tan α)^2 ]))

tanβ=11×tanα1=1tanαβ=tan1(1tanα)sinβ=1tanα1+(1tanα)2cosβ=11+(1tanα)2sidelengthofbluesquare:1×tanα×cosβ=tanα1+(1tanα)2ABlue=tan2α1+(1tanα)2Redtriangle:sidea=1×sinαsidebwithbsinα=1sin(α+β)b=1×sinαsin(α+β)=sinα1+(1tanα)2sinα+cosα(1tanα)=tanα1+(1tanα)2ARed=12×sinα×tanα1+(1tanα)2×cos(α+β)12×sinα×tanα×[cosαsinα(1tanα)]ARed=(2sin2α)tan2α4Greentriangle:sidecwithc=1×sinβb=1tanα1+(1tanα)2tanα1+(1tanα)2=1tanαtanα[1+(1tanα)2]1+(1tanα)2=12tanαtanα(1tanα)21+(1tanα)2sidedwithd=ctanγ=ctan(α+β)=ctanα+(1tanα)1tanα(1tanα)=12tanαtanα(1tanα)2(1tanα+tan2α)1+(1tanα)2AGreen=cd2=12×1tanαtanα[1+(1tanα)2]1+(1tanα)2×12tanαtanα(1tanα)2(1tanα+tan2α)1+(1tanα)2AGreen=[12tanαtanα(1tanα)2]22(1tanα+tan2α)[1+(1tanα)2]

Commented by MrW3 last updated on 11/Jul/18

Commented by ajfour last updated on 12/Jul/18

Great! (patience and idea both),Sir   Thank you. I will also try.

Great!(patienceandideaboth),SirThankyou.Iwillalsotry.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com