Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 39827 by Rio Mike last updated on 11/Jul/18

if f(x) = 3x^3  + px^2  + 4x − 8  and (x − 1) is a factor of   f(x).  a) find the value of p.  with these value of p  b) solve the equation f(x) = 0.  if α and β are roots of   f(x),   c) find α + β and αβ  d) Evaluate α^2  + β^2  hence α − β

iff(x)=3x3+px2+4x8and(x1)isafactoroff(x).a)findthevalueofp.withthesevalueofpb)solvetheequationf(x)=0.ifαandβarerootsoff(x),c)findα+βandαβd)Evaluateα2+β2henceαβ

Answered by MJS last updated on 11/Jul/18

3(x−1)(x−α)(x−β)=3x^3 +px^2 +4x−8  3x^3 −3(α+β+1)x^2 +3(α+αβ+β)x−3αβ=  =3x^3 +px^2 +4x−8  ⇒  p=−3(α+β+1)  3(α+αβ+β)=4  3αβ=8 ⇒ α=(8/(3β))  3((8/(3β))+(8/(3β))β+β)=4 ⇒ β^2 +(4/3)β+(8/3)=0 ⇒  ⇒ β=−(2/3)±((2(√5))/3)i  ⇒ α=−(2/3)∓((2(√5))/3)i  ⇒ p=1  α+β=−(4/3)  αβ=(8/3)  α^2 +β^2 =−((32)/9)  α−β=±((4(√5))/3)i

3(x1)(xα)(xβ)=3x3+px2+4x83x33(α+β+1)x2+3(α+αβ+β)x3αβ==3x3+px2+4x8p=3(α+β+1)3(α+αβ+β)=43αβ=8α=83β3(83β+83ββ+β)=4β2+43β+83=0β=23±253iα=23253ip=1α+β=43αβ=83α2+β2=329αβ=±453i

Commented by Rio Mike last updated on 12/Jul/18

the cubic expression is of   the form   y = ax^(3 ) + bx^2  + cx + d  so what is α+β^ =?  and αβ=?

thecubicexpressionisoftheformy=ax3+bx2+cx+dsowhatisα+β=?andαβ=?

Commented by MJS last updated on 12/Jul/18

α, β are  the roots besides 1 which is given in  this case.  ax^3 +bx^2 +cx+d=a(x−α)(x−β)(x−γ)=  =a(x^3 −(α+β+γ)x^2 +(αβ+αγ+βγ)x−αβγ)  in our case γ=1 leads to  a(x^3 −(α+β+1)x^2 +(α+αβ+β)x−αβ)

α,βaretherootsbesides1whichisgiveninthiscase.ax3+bx2+cx+d=a(xα)(xβ)(xγ)==a(x3(α+β+γ)x2+(αβ+αγ+βγ)xαβγ)inourcaseγ=1leadstoa(x3(α+β+1)x2+(α+αβ+β)xαβ)

Answered by Rasheed.Sindhi last updated on 13/Jul/18

AnOther approach  If f(x) is divided by x−1 then the  quotient Q(x) and remainder R can  be determined by synthetic division:   (((1) 3),(   p),(   4),(  −8)),(,(   3),(p+3),(  p+7)),((      3),(p+3),(p+7),(∣p−1^(−) )) )  ∵ x−1 is factor of f(x)  ∴R=p−1=0⇒p=1    (a)  Q(x)=3x^2 +(p+3)x+(p+7)            =3x^2 +(1+3)x+(1+7)            =3x^2 +4x+8  f(x)=(x−1).Q(x)+R    [Relation between divedend,divisor & remainder]           =(x−1).Q(x)+0           =(x−1)(3x^2 +4x+8)  (b)  f(x)=0⇒x−1=0  ∣  3x^2 +4x+8=0                 x=1 ∣ x=((−4±(√(16−96)))/6)                           ∣ x=((−2±2i(√5))/3)  Let α & β are the roots of 3x^2 +4x+8=0      α+β=−(4/3)  &  αβ=(8/3)      α−β=((−2+2i(√5))/3)−((−2−2i(√5))/3)                 =((4(√5))/3)i  α^2 +β^2 =(α+β)^2 −2αβ=(−(4/3))^2 −2((8/3))              =((16)/9)−((16)/3)=((16−48)/9)=−((32)/9)

AnOtherapproachIff(x)isdividedbyx1thenthequotientQ(x)andremainderRcanbedeterminedbysyntheticdivision:(1)3p483p+3p+73p+3p+7p1)x1isfactoroff(x)R=p1=0p=1(a)Q(x)=3x2+(p+3)x+(p+7)=3x2+(1+3)x+(1+7)=3x2+4x+8f(x)=(x1).Q(x)+R[Relationbetweendivedend,divisor&remainder]=(x1).Q(x)+0=(x1)(3x2+4x+8)(b)f(x)=0x1=03x2+4x+8=0x=1x=4±16966x=2±2i53Letα&βaretherootsof3x2+4x+8=0α+β=43&αβ=83αβ=2+2i5322i53=453iα2+β2=(α+β)22αβ=(43)22(83)=169163=16489=329

Terms of Service

Privacy Policy

Contact: info@tinkutara.com