Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 39839 by math khazana by abdo last updated on 12/Jul/18

calculate lim_(x→1)    ∫_x ^x^2     ((arctan(2t))/(sin(πt)))dt

$${calculate}\:{lim}_{{x}\rightarrow\mathrm{1}} \:\:\:\int_{{x}} ^{{x}^{\mathrm{2}} } \:\:\:\frac{{arctan}\left(\mathrm{2}{t}\right)}{{sin}\left(\pi{t}\right)}{dt} \\ $$

Commented by math khazana by abdo last updated on 30/Jul/18

let f(x)= ∫_x ^x^2     ((arctan(2t))/(sin(πt))) dt changement t=u+1  give f(x)= ∫_(x−1) ^(x^2 −1)   ((arctan(2u+2))/(sin(πu +π)))du  =− ∫_(x−1) ^(x^2 −1)    ((arctan(2u+2))/(sin(πu))) du but ∃c ∈]x−1,x^2 −1[/  f(x)=−arctan(2c+2) ∫_(x−1) ^(x^2  −1)    (du/(sin(πu))) we have  ∫_(x−1) ^(x^2 −1)   (du/(sin(πu))) =_(πu =t)    ∫_(π(x−1)) ^(π(x^2 −1))   (dt/(πsint))  =_(tan((t/2)) =α)     (1/π) ∫_(tan((π/2)(x−1))) ^(tan((π/2)(x^2 −1)))     (1/((2α)/(1+α^2 ))) ((2dα)/(1+α^2 ))  =(1/π)[ln∣α∣]_(tan((π/2)(x−1))) ^(tan((π/2)(x^2 −1)))   =(1/π)ln∣((tan((π/2)(x^2 −1)))/(tan((π/2)(x−1))))∣  for x∈v(1) tan((π/2)(x^2 −1))∼(π/2)(x^2 −1) and  tan((π/2)(x−1))∼ (π/2)(x−1) ⇒∣((tan(...))/(tan(..)))∣∼∣x+1∣⇒  lim_(x→1)  ∫_(x−1) ^(x^2 −1)    (du/(sin(πu))) =((ln(2))/π) ⇒  lim_(x→1) f(x)=−arctan(2)((ln(2))/π) .

$${let}\:{f}\left({x}\right)=\:\int_{{x}} ^{{x}^{\mathrm{2}} } \:\:\:\frac{{arctan}\left(\mathrm{2}{t}\right)}{{sin}\left(\pi{t}\right)}\:{dt}\:{changement}\:{t}={u}+\mathrm{1} \\ $$$${give}\:{f}\left({x}\right)=\:\int_{{x}−\mathrm{1}} ^{{x}^{\mathrm{2}} −\mathrm{1}} \:\:\frac{{arctan}\left(\mathrm{2}{u}+\mathrm{2}\right)}{{sin}\left(\pi{u}\:+\pi\right)}{du} \\ $$$$\left.=−\:\int_{{x}−\mathrm{1}} ^{{x}^{\mathrm{2}} −\mathrm{1}} \:\:\:\frac{{arctan}\left(\mathrm{2}{u}+\mathrm{2}\right)}{{sin}\left(\pi{u}\right)}\:{du}\:{but}\:\exists{c}\:\in\right]{x}−\mathrm{1},{x}^{\mathrm{2}} −\mathrm{1}\left[/\right. \\ $$$${f}\left({x}\right)=−{arctan}\left(\mathrm{2}{c}+\mathrm{2}\right)\:\int_{{x}−\mathrm{1}} ^{{x}^{\mathrm{2}} \:−\mathrm{1}} \:\:\:\frac{{du}}{{sin}\left(\pi{u}\right)}\:{we}\:{have} \\ $$$$\int_{{x}−\mathrm{1}} ^{{x}^{\mathrm{2}} −\mathrm{1}} \:\:\frac{{du}}{{sin}\left(\pi{u}\right)}\:=_{\pi{u}\:={t}} \:\:\:\int_{\pi\left({x}−\mathrm{1}\right)} ^{\pi\left({x}^{\mathrm{2}} −\mathrm{1}\right)} \:\:\frac{{dt}}{\pi{sint}} \\ $$$$=_{{tan}\left(\frac{{t}}{\mathrm{2}}\right)\:=\alpha} \:\:\:\:\frac{\mathrm{1}}{\pi}\:\int_{{tan}\left(\frac{\pi}{\mathrm{2}}\left({x}−\mathrm{1}\right)\right)} ^{{tan}\left(\frac{\pi}{\mathrm{2}}\left({x}^{\mathrm{2}} −\mathrm{1}\right)\right)} \:\:\:\:\frac{\mathrm{1}}{\frac{\mathrm{2}\alpha}{\mathrm{1}+\alpha^{\mathrm{2}} }}\:\frac{\mathrm{2}{d}\alpha}{\mathrm{1}+\alpha^{\mathrm{2}} } \\ $$$$=\frac{\mathrm{1}}{\pi}\left[{ln}\mid\alpha\mid\right]_{{tan}\left(\frac{\pi}{\mathrm{2}}\left({x}−\mathrm{1}\right)\right)} ^{{tan}\left(\frac{\pi}{\mathrm{2}}\left({x}^{\mathrm{2}} −\mathrm{1}\right)\right)} \:\:=\frac{\mathrm{1}}{\pi}{ln}\mid\frac{{tan}\left(\frac{\pi}{\mathrm{2}}\left({x}^{\mathrm{2}} −\mathrm{1}\right)\right)}{{tan}\left(\frac{\pi}{\mathrm{2}}\left({x}−\mathrm{1}\right)\right)}\mid \\ $$$${for}\:{x}\in{v}\left(\mathrm{1}\right)\:{tan}\left(\frac{\pi}{\mathrm{2}}\left({x}^{\mathrm{2}} −\mathrm{1}\right)\right)\sim\frac{\pi}{\mathrm{2}}\left({x}^{\mathrm{2}} −\mathrm{1}\right)\:{and} \\ $$$${tan}\left(\frac{\pi}{\mathrm{2}}\left({x}−\mathrm{1}\right)\right)\sim\:\frac{\pi}{\mathrm{2}}\left({x}−\mathrm{1}\right)\:\Rightarrow\mid\frac{{tan}\left(...\right)}{{tan}\left(..\right)}\mid\sim\mid{x}+\mathrm{1}\mid\Rightarrow \\ $$$${lim}_{{x}\rightarrow\mathrm{1}} \:\int_{{x}−\mathrm{1}} ^{{x}^{\mathrm{2}} −\mathrm{1}} \:\:\:\frac{{du}}{{sin}\left(\pi{u}\right)}\:=\frac{{ln}\left(\mathrm{2}\right)}{\pi}\:\Rightarrow \\ $$$${lim}_{{x}\rightarrow\mathrm{1}} {f}\left({x}\right)=−{arctan}\left(\mathrm{2}\right)\frac{{ln}\left(\mathrm{2}\right)}{\pi}\:. \\ $$$$ \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com