Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 39854 by ajfour last updated on 12/Jul/18

Commented by ajfour last updated on 12/Jul/18

Choose the correct options:  (i) a≈1.6          (ii)  b≈2.7  (iii)  a ≈ 1.8   (iv)  b ≈ 2.4

Choosethecorrectoptions:(i)a1.6(ii)b2.7(iii)a1.8(iv)b2.4

Commented by tanmay.chaudhury50@gmail.com last updated on 12/Jul/18

every problem you post really praiseworthy  you please repost those probems remain  unsolved till dateso that we get option .  to choose..

everyproblemyoupostreallypraiseworthyyoupleaserepostthoseprobemsremainunsolvedtilldatesothatwegetoption.tochoose..

Answered by MrW3 last updated on 12/Jul/18

let DT=PB=t  ⇒TP=(1/t)  ⇒TA=t^2   CP=(√(1+(1/t^2 )))  CD=(√(1+t^2 ))  CB=(√(1+(1/t^2 )))+t  CA=1+t^2   CD^2 +CB^2 =CA^2   1+t^2 +t^2 +1+(1/t^2 )+2t(√(1+(1/t^2 )))=1+t^4 +2t^2   1+(1/t^2 )+2t(√(1+(1/t^2 )))=t^4   ⇒t^2 +1+2t^2 (√(t^2 +1))=t^6   ⇒t≈1.499    a=CD=(√(1+t^2 ))≈1.802  b=CB=t+(√(1+(1/t^2 )))=≈2.701

letDT=PB=tTP=1tTA=t2CP=1+1t2CD=1+t2CB=1+1t2+tCA=1+t2CD2+CB2=CA21+t2+t2+1+1t2+2t1+1t2=1+t4+2t21+1t2+2t1+1t2=t4t2+1+2t2t2+1=t6t1.499a=CD=1+t21.802b=CB=t+1+1t2=≈2.701

Commented by ajfour last updated on 12/Jul/18

Alright Sir, thanks ′gain.

AlrightSir,thanksgain.

Answered by ajfour last updated on 12/Jul/18

Let  ∠CDP = ∠ACB = θ  As    DT = BP  ⇒   acos θ = (a/(tan θ))−atan θ  ⇒   sin θcos^2 θ = cos^2 θ−sin^2 θ  let sin θ = x  ⇒   x(1−x^2 )=1−2x^2   ⇒    x^3 −2x^2 −x+1=0  _________________________  let x= t+(2/3)  ⇒ t^3 +2t^2 +((4t)/3)+(8/(27))−2t^2 −((8t)/3)−((24)/(27))         −((3t)/3)−((18)/(27))+((27)/(27)) =0  ⇒  t^3 −((7t)/3)−(7/(27))=0  let  t= u+v  ⇒ u^3 +v^3 +(u+v)(3uv−(7/3))=(7/(27))  let   uv = (7/9)  ⇒  u^3 v^3  = ((343)/(729))  and  u^3 +v^3 =(7/(27))  u^3  and v^3  are then roots of        z^2 −((7z)/(27))+((343)/(729)) =0      z = (((7/(27))±(√(((49)/(27×27))−((1372)/(729)))))/2)      t= u+v          (appropriate value < 0 )   t=(((7+i(√(1323)))/(54)))^(1/3) +(((7−i(√(1323)))/(54)))^(1/3)   let  t= r^(1/3) (cos θ+isin θ)^(1/3)         +r^(1/3) (cos θ−isin θ)^(1/3)   where   r= ((√(49+1323))/(54)) =((√(1372))/(54))    rcos θ = (7/(54))   ⇒ cos (2π−θ) = (7/(√(1372)))  ⇒   x =t+(2/3)= 2r^(1/3) cos (θ/3)+(2/3)      x = 2(((√(1372))/(54)))^(1/3) cos (((2π)/3)−(1/3)cos^(−1) (7/(√(1372))))+(2/3)  _________________________  ⇒   x≈ 0.55496   a= (1/(sin 𝛉)) =(1/x) ≈ 1.802   b=acot 𝛉 = a(√((1/(sin^2 𝛉))−1))      ≈ 1.802×(√((1/((0.55496)^2 ))−1))  ⇒   b ≈ 2.701 .

LetCDP=ACB=θAsDT=BPacosθ=atanθatanθsinθcos2θ=cos2θsin2θletsinθ=xx(1x2)=12x2x32x2x+1=0_________________________letx=t+23t3+2t2+4t3+8272t28t324273t31827+2727=0t37t3727=0lett=u+vu3+v3+(u+v)(3uv73)=727letuv=79u3v3=343729andu3+v3=727u3andv3arethenrootsofz27z27+343729=0z=727±4927×2713727292t=u+v(appropriatevalue<0)t=(7+i132354)1/3+(7i132354)1/3lett=r1/3(cosθ+isinθ)1/3+r1/3(cosθisinθ)1/3wherer=49+132354=137254rcosθ=754cos(2πθ)=71372x=t+23=2r1/3cosθ3+23x=2(137254)1/3cos(2π313cos171372)+23_________________________x0.55496a=1sinθ=1x1.802b=acotθ=a1sin2θ11.802×1(0.55496)21b2.701.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com