Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 39868 by math2018 last updated on 12/Jul/18

a,b,c>0,if  ((8a^2 )/(a^2 +9))=b,  ((10b^2 )/(b^2 +16))=c,  ((6c^2 )/(c^2 +25))=a,  then,what is the minimum value of  a+b+c?

a,b,c>0,if 8a2a2+9=b,10b2b2+16=c,6c2c2+25=a, then,whatistheminimumvalueofa+b+c?

Answered by tanmay.chaudhury50@gmail.com last updated on 12/Jul/18

b=(8/(1+(9/a^2 )))=(8/((1−(3/a))^2 +(6/a)))  if  a=3  then   b=4  c=((10)/((1−(4/b))^2 +(8/b)))  if b=4    c=5  a=(6/((1−(5/c))^2 +((10)/c)))  if c=5   a=3  so a=3  b=4  c=5 satisfy three eqn  a+b+c=12  pls check...whether any direct method to solve  i do not know...

b=81+9a2=8(13a)2+6a ifa=3thenb=4 c=10(14b)2+8bifb=4c=5 a=6(15c)2+10cifc=5a=3 soa=3 b=4 c=5satisfythreeeqn a+b+c=12 plscheck...whetheranydirectmethodtosolve idonotknow...

Commented bymath2018 last updated on 13/Jul/18

Thank you for your work!

Thankyouforyourwork!

Answered by ajfour last updated on 12/Jul/18

let a=3tan 𝛂, b=4tan 𝛃, c=5tan 𝛄  Then  ((8×9tan^2 α)/(9sec^2 α)) =4tan β  ⇒  2sin^2 α = tan β       ....(i)  ((10×16tan^2 β)/(16sec^2 β)) =5tan γ  ⇒  2sin^2 β = tan γ      ....(ii)  ((6×25tan^2 γ)/(25sec^2 γ)) = 3tan α  ⇒  2sin^2 γ = tan α        ....(iii)  (i)×(ii)×(iii)   gives  8sin^2 α sin^2 β sin^2 γ =tan α tan β tan γ  or    sin 2α sin 2β sin 2γ = 1  ⇒  α = β = γ = (π/4)  a+b+c = 3tan α+4tan β+5tan γ                  = (3+4+5)tan (π/4)  a+b+c = 12 .  (why the minimum? )!

leta=3tanα,b=4tanβ,c=5tanγ Then 8×9tan2α9sec2α=4tanβ 2sin2α=tanβ....(i) 10×16tan2β16sec2β=5tanγ 2sin2β=tanγ....(ii) 6×25tan2γ25sec2γ=3tanα 2sin2γ=tanα....(iii) (i)×(ii)×(iii)gives 8sin2αsin2βsin2γ=tanαtanβtanγ orsin2αsin2βsin2γ=1 α=β=γ=π4 a+b+c=3tanα+4tanβ+5tanγ =(3+4+5)tanπ4 a+b+c=12. (whytheminimum?)!

Commented bytanmay.chaudhury50@gmail.com last updated on 13/Jul/18

yes  i forgot it ...thank you for correction

yesiforgotit...thankyouforcorrection

Commented bymath2018 last updated on 13/Jul/18

∵a>0,b>0,c>0  ∴a+b+c≠0  Thank you Sir.

a>0,b>0,c>0 a+b+c0 ThankyouSir.

Commented bymath2018 last updated on 13/Jul/18

a=((6c^2 )/(c^2 +25))≤((6c^2 )/(2(√(25c^2 ))))=((3c)/5)  b=((8a^2 )/(a^2 +9))≤((8a^2 )/(2(√(9a^2 ))))=((4a)/3)  c=((10b^2 )/(b^2 +16))≤((10b^2 )/(2(√(16b^2 ))))=((5b)/4)  now we can get the minimum value of a+b+c  Thank you very much!

a=6c2c2+256c2225c2=3c5 b=8a2a2+98a229a2=4a3 c=10b2b2+1610b2216b2=5b4 nowwecangettheminimumvalueofa+b+c Thankyouverymuch!

Commented bytanmay.chaudhury50@gmail.com last updated on 13/Jul/18

(a/3)=(b/4)=(c/5)=k  a=3k  b=4k  c=5k    a=((6c^2 )/(c^2 +25))=((6×25k^2 )/(25k^2 +25))  3k=((6k^2 )/(k^2 +1))  3k(k^2 +1)−6k^2 =0  3k(k^2 +1−2k)=0  so k=0 and k=1  a+b+c  =3k+4k+5k=12k  so when k=0   a+b+c=0  when k=1  a+b+c=12  hence min value is zero...pls check...

a3=b4=c5=k a=3kb=4kc=5k a=6c2c2+25=6×25k225k2+25 3k=6k2k2+1 3k(k2+1)6k2=0 3k(k2+12k)=0 sok=0andk=1 a+b+c =3k+4k+5k=12k sowhenk=0a+b+c=0 whenk=1a+b+c=12 henceminvalueiszero...plscheck...

Terms of Service

Privacy Policy

Contact: info@tinkutara.com