Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 39891 by math khazana by abdo last updated on 13/Jul/18

let f(x)=arctan(2x+1)  1) calculate  f^((n)) (x)  2) calculate f^((n)) (0)  3) developp f at integr serie  4) calculate  ∫_0 ^1    f(x)dx  5) calculate  ∫_0 ^1    ((arctan(2x+1))/(4x^2  +4x +2))dx

letf(x)=arctan(2x+1)1)calculatef(n)(x)2)calculatef(n)(0)3)developpfatintegrserie4)calculate01f(x)dx5)calculate01arctan(2x+1)4x2+4x+2dx

Commented by maxmathsup by imad last updated on 13/Jul/18

1) we have f^′ (x)= (2/(1+(2x+1)^2 )) ⇒f^((n)) (x)=2  ((1/((2x+1)^2 +1)))^((n−1))   let w(x)= (1/((2x+1)^2  +1))  .let decompose w inside C(x)  w(x)= (1/((2x+1−i)(2x+1 +i))) = (1/(4(x +((1−i)/2))(x +((1+i)/2))))  =(1/(4(x +(1/(√2))e^(−((iπ)/4)) )(x  +(1/(√2))e^(i(π/4)) ))) = (a/(x+(1/(√2))e^(−((iπ)/4)) )) +(b/(x+(1/(√2))e^((iπ)/4) ))  a =lim_(x→−(1/(√2))e^(−((iπ)/4)) )    (x +(1/(√2))e^(−((iπ)/4)) )w(x)=  (1/(4(1/(√2))(e^((iπ)/4)  −e^(−((iπ)/4)) ))) = ((√2)/(4(2i(1/(√2))))) = (1/(4i))  b =lim_(x→−(1/(√2)) e^(i(π/4)) )    (x+ (1/(√2)) e^((iπ)/4) )w(x)=  (1/(4(1/((√2) ))(−e^((iπ)/4)  +e^(−((iπ)/4)) ))) =((√2)/(−4(2i(1/(√2)))))  = ((−2)/(8i)) = −(1/(4i)) ⇒w(x)= (1/(4i)){    (1/(x+(1/(√2))e^(−((iπ)/4)) )) −(1/(x +(1/(√2))e^((iπ)/4) ))} ⇒  w^((n−1)) = (1/(4i)){   (((−1)^(n−1) (n−1)!)/((x +(1/(√2))e^(−((iπ)/4)) )^n )) −(((−1)^(n−1) (n−1)!)/((x +(1/(√2))e^((iπ)/4) )^n ))} ⇒  f^((n)) (x) =2 w^((n−1)) (x) = (((−1)^(n−1) (n−1)!)/(2i)){   (1/((x +(1/(√2))e^(−((iπ)/4)) )^n )) −(1/((x +(1/(√2))e^((iπ)/4) )^n ))}.

1)wehavef(x)=21+(2x+1)2f(n)(x)=2(1(2x+1)2+1)(n1)letw(x)=1(2x+1)2+1.letdecomposewinsideC(x)w(x)=1(2x+1i)(2x+1+i)=14(x+1i2)(x+1+i2)=14(x+12eiπ4)(x+12eiπ4)=ax+12eiπ4+bx+12eiπ4a=limx12eiπ4(x+12eiπ4)w(x)=1412(eiπ4eiπ4)=24(2i12)=14ib=limx12eiπ4(x+12eiπ4)w(x)=1412(eiπ4+eiπ4)=24(2i12)=28i=14iw(x)=14i{1x+12eiπ41x+12eiπ4}w(n1)=14i{(1)n1(n1)!(x+12eiπ4)n(1)n1(n1)!(x+12eiπ4)n}f(n)(x)=2w(n1)(x)=(1)n1(n1)!2i{1(x+12eiπ4)n1(x+12eiπ4)n}.

Commented by maxmathsup by imad last updated on 13/Jul/18

2) for x=0 we get   f^((n)) (0) = (((−1)^(n−1) (n−1)!)/(2i)) {   (1/(((1/(√2))e^(−((iπ)/4)) )^n )) −(1/(((1/(√2))e^((iπ)/4) )^n ))}  =(((−1)^(n−1) (n−1)!)/(2i)){ ((√2))^n  e^((inπ)/4)  −((√2))^n  e^(−((inπ)/4)) }  =((((√2))^n (−1)^(n−1) (n−1)!)/(2i)) (2i sin(((nπ)/4))) ⇒  f^((n)) (0) =(−1)^n (n−1)! ((√2))^n  sin(((nπ)/4)) .

2)forx=0wegetf(n)(0)=(1)n1(n1)!2i{1(12eiπ4)n1(12eiπ4)n}=(1)n1(n1)!2i{(2)neinπ4(2)neinπ4}=(2)n(1)n1(n1)!2i(2isin(nπ4))f(n)(0)=(1)n(n1)!(2)nsin(nπ4).

Commented by maxmathsup by imad last updated on 14/Jul/18

3) we have f(x)=Σ_(n=0) ^∞   ((f^((n)) (0))/(n!)) x^n  =(π/4) +Σ_(n=1) ^∞   ((f^((n)) (0))/(n!))x^n   f(x)=(π/4) +Σ_(n=1) ^∞    (((−1)^(n−1) (n−1)!((√2))^n )/(n!)) x^n   = (π/4) +Σ_(n=1) ^∞   (((−1)^(n−1) )/n) ((√2))^n sin(((nπ)/4)) x^n   .

3)wehavef(x)=n=0f(n)(0)n!xn=π4+n=1f(n)(0)n!xnf(x)=π4+n=1(1)n1(n1)!(2)nn!xn=π4+n=1(1)n1n(2)nsin(nπ4)xn.

Commented by maxmathsup by imad last updated on 14/Jul/18

4) ∫_0 ^1 f(x)dx = ∫_0 ^1  arctan(2x+1)dx  by parts u^′ =1 and v=arctan(2x+1)  ∫_0 ^1  arctan(2x+1)dx = [x arctan(2x+1)]_0 ^1  − ∫_0 ^1  x (2/(1+(2x+1)^2 ))dx  = arctan(3) − ∫_0 ^1      ((2x)/(4x^2  +4x +2)) dx  but  ∫_0 ^1      ((2x)/(4x^2  +4x +2))dx = ∫_0 ^1     (x/(2x^2  +2x +1))dx =(1/4) ∫_0 ^1   ((4x +2−2)/(2x^2  +2x +1))dx  = (1/4) ∫_0 ^1   ((4x+2)/(2x^2  +2x+1)) dx −(1/2) ∫_0 ^1     (dx/(2(x^2  +x +(1/2))))  =(1/4)[ln∣2x^2  +2x +1∣]_0 ^1   −(1/4) ∫_0 ^1    (dx/(x^2  +2(1/2)x +(1/4)+(1/4)))  =(1/4)ln(5) −(1/4) ∫_0 ^1       (dx/((x+(1/2))^2  +(1/4)))  ( ch .x+(1/2)=(1/2)t)  =(1/4)ln(5)  −(1/4) ∫_0 ^1       (1/((1/4)(1+t^2 ))) (dt/2) =((ln(5))/4) −(1/2) (π/4) =((ln(5))/4) −(π/8) ⇒  ∫_0 ^1 f(x)dx = arctan(3) −((ln(5))/4) +(π/8) .

4)01f(x)dx=01arctan(2x+1)dxbypartsu=1andv=arctan(2x+1)01arctan(2x+1)dx=[xarctan(2x+1)]0101x21+(2x+1)2dx=arctan(3)012x4x2+4x+2dxbut012x4x2+4x+2dx=01x2x2+2x+1dx=14014x+222x2+2x+1dx=14014x+22x2+2x+1dx1201dx2(x2+x+12)=14[ln2x2+2x+1]011401dxx2+212x+14+14=14ln(5)1401dx(x+12)2+14(ch.x+12=12t)=14ln(5)1401114(1+t2)dt2=ln(5)412π4=ln(5)4π801f(x)dx=arctan(3)ln(5)4+π8.

Commented by maxmathsup by imad last updated on 14/Jul/18

5) we have  ∫_0 ^1    ((arctan(2x+1))/(4x^2  +4x +2))dx = ∫_0 ^1    ((arctan(2x+1))/((2x+1)^2  +1)) and by parts  u^′  = (1/((2x+1)^2  +1)) and v=arctan(2x+1) we get  ∫_0 ^1    ((arctan(2x+1))/((2x+1)^2  +1)) dx = [ (1/2)arctan(2x+1).arctan(2x+1)]_0 ^1   −∫_0 ^1   (1/2) arctan(2x+1).(2/((2x+1)^2  +1)) dx  =(1/2) (arctan(3))^2  −(π^2 /(32)) −∫_0 ^1    ((arctan(2x+1))/((2x+1)^2  +1)) ⇒  ∫_0 ^1    ((arctan(2x+1))/((2x+1)^2  +1)) dx = (1/4) (arctan(3))^2  −(π^2 /(64)) .

5)wehave01arctan(2x+1)4x2+4x+2dx=01arctan(2x+1)(2x+1)2+1andbypartsu=1(2x+1)2+1andv=arctan(2x+1)weget01arctan(2x+1)(2x+1)2+1dx=[12arctan(2x+1).arctan(2x+1)]010112arctan(2x+1).2(2x+1)2+1dx=12(arctan(3))2π23201arctan(2x+1)(2x+1)2+101arctan(2x+1)(2x+1)2+1dx=14(arctan(3))2π264.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com