Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 39892 by math khazana by abdo last updated on 13/Jul/18

let g(x)= e^(−2x)  arctan(x+3)  developp g at integr serie  .

letg(x)=e2xarctan(x+3)developpgatintegrserie.

Commented by math khazana by abdo last updated on 13/Jul/18

we have g^((n)) (x) = Σ_(k=0) ^n  (arctan(x+3))^((k)) (e^(−2x)) )^((n−k))   but arctan(x+3)^((1)) =  (1/((1+(x+3)^2 ))  ⇒ (arctan(x+3)}^((n))  = { (1/((x+3)^2 +1))}^((n−1))   let w(x)= (1/((x+3)^2 +1))  w(x)= (1/((x+3+i)(x+3−i))) = (a/(x+3+i)) +(b/(x+3−i))  a =lim_(x→−3−i) (x+3+i)w(z) = (1/(−3−i+3−i)) =−(1/(2i))  b=lim_(x→−3+i) (x+3−i)w(z)= (1/(−3+i+3+i)) =(1/(2i))  w(x)=(1/(2i)){   (1/(x+3−i)) −(1/(x+3+i))}  ⇒(arctan(x+3))^((k))  =(1/(2i)){ ( (1/(x+3−i)))^((k−1)))  −((1/(x+3+i)))^((k−1)) }  = (1/(2i)) (((−1)^(k−1) (k−1)!)/((x+3−i)^k )) −(1/(2i))(((−1)^(k−1) (k−1)!)/((x+3+i)^k )) ⇒  g^((n)) (x) =Σ_(k=0) ^n   (((−1)^(k−1) (k−1)!)/(2i)){ (1/((x+3−i)^k )) −(1/((x+3+i)^k ))}(−2)^(n−k)  e^(−2x)

wehaveg(n)(x)=k=0n(arctan(x+3))(k)(e2x))(nk)butarctan(x+3)(1)=1(1+(x+3)2(arctan(x+3)}(n)={1(x+3)2+1}(n1)letw(x)=1(x+3)2+1w(x)=1(x+3+i)(x+3i)=ax+3+i+bx+3ia=limx3i(x+3+i)w(z)=13i+3i=12ib=limx3+i(x+3i)w(z)=13+i+3+i=12iw(x)=12i{1x+3i1x+3+i}(arctan(x+3))(k)=12i{(1x+3i)(k1))(1x+3+i)(k1)}=12i(1)k1(k1)!(x+3i)k12i(1)k1(k1)!(x+3+i)kg(n)(x)=k=0n(1)k1(k1)!2i{1(x+3i)k1(x+3+i)k}(2)nke2x

Commented by math khazana by abdo last updated on 13/Jul/18

g^((n)) (x) = arctan(x+3) +Σ_(k=1) ^n (((−1)^(k−1) (k−1)!)/(2i)){ (1/((x+3−i)^k )) −(1/((x+3+i)^k ))}(−2)^(n−k)  e^(−2x)

g(n)(x)=arctan(x+3)+k=1n(1)k1(k1)!2i{1(x+3i)k1(x+3+i)k}(2)nke2x

Commented by math khazana by abdo last updated on 13/Jul/18

g^((n)) (0) =arctan(3)+Σ_(k=1) ^n  (((−1)^(k−1) (k−1)!)/(2i)){ (1/((3−i)^k )) −(1/((3+i)^k ))}  =arctan(3) +Σ_(k=1) ^n  (((−1)^(k−1) (k−1)!)/(2i)){(((3+i)^k  −(3−i)^k )/(10^k ))}  f(x) =Σ_(n=0) ^∞   ((f^((n)) (0))/(n!)) x^n   and f^((n)) (0) is known .

g(n)(0)=arctan(3)+k=1n(1)k1(k1)!2i{1(3i)k1(3+i)k}=arctan(3)+k=1n(1)k1(k1)!2i{(3+i)k(3i)k10k}f(x)=n=0f(n)(0)n!xnandf(n)(0)isknown.

Commented by maxmathsup by imad last updated on 13/Jul/18

g^((n)) (x)=Σ_(k=0) ^n   C_n ^k (arctan(x+3))^((k)) (e^(−2x) )^((n−k))   and at the final line  g^((n)) (x) =arctan(x+3) +Σ_(k=1) ^n  C_n ^k  (((−1)^(k−1) (k−1)!)/(2i)){ (1/((x+3−i)^k )) −(1/((x+3+i)^k ))}(−2)^(n−k)  e^(−2x)

g(n)(x)=k=0nCnk(arctan(x+3))(k)(e2x)(nk)andatthefinallineg(n)(x)=arctan(x+3)+k=1nCnk(1)k1(k1)!2i{1(x+3i)k1(x+3+i)k}(2)nke2x

Commented by maxmathsup by imad last updated on 13/Jul/18

g^((n)) (0)= arctan(3) +Σ_(k=1) ^n  C_n ^k  (−2)^(n−k)  (((−1)^(k−1) (k−1)!)/(2i)){ (((3+i)^k  −(3−i)^k )/(10^k ))}

g(n)(0)=arctan(3)+k=1nCnk(2)nk(1)k1(k1)!2i{(3+i)k(3i)k10k}

Terms of Service

Privacy Policy

Contact: info@tinkutara.com