Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 39967 by math khazana by abdo last updated on 14/Jul/18

1) decompose inside C(x) the fraction  F(x)= (3/(4+x^4 ))  2) find ∫_(−∞) ^(+∞)    (dx/(x−z))  with z from C  3) find the value of  ∫_(−∞) ^(+∞)    ((3dx)/(4+x^4 )) .

1)decomposeinsideC(x)thefractionF(x)=34+x42)find+dxxzwithzfromC3)findthevalueof+3dx4+x4.

Commented by math khazana by abdo last updated on 15/Jul/18

3) for Q 3) i have used the  formulae  ∫_0 ^∞    (t^(a−1) /(1+t)) dt = (π/(sin(πa))) if 0<a<1 .

3)forQ3)ihaveusedtheformulae0ta11+tdt=πsin(πa)if0<a<1.

Commented by abdo mathsup 649 cc last updated on 15/Jul/18

1) we have F(x)= (3/(((√2))^4  +x^4 )) =(3/(((2)^2  +(x^2 )^2 ))  = (3/((x^2  +2)^2  −4x^2 )) = (3/((x^2  −2x +2)(x^2  +2x +2)))  roots of x^2  −2x +2   Δ^′  = 1−2 =−1=(i)^2  ⇒x_0 = 1 +i =(1/(√2)) e^((iπ)/4)   x_1 =1−i =(1/(√2)) e^(−((iπ)/4))   roots of  x^2  +2x+2   Δ^′  =1−2=−1 ⇒ x_2 = −1 +i =(1/(√2)) e^((i3π)/4)   x_3 = −1−i = (1/(√2)) e^(−((i3π)/4))   ⇒  F(x) =  (3/((x−x_0 )(x−x_1 )(x−x_2 )(x−x_3 )))  = (3/((x−(1/(√2))e^((iπ)/4) )(x−(1/(√2))e^(−((iπ)/4)) )(x−(1/(√2))e^((i3π)/4) )(x−(1/(√2)) e^(−((i3π)/4)) )))  = (a/(x−(1/(√2))e^((iπ)/4) )) + (b/(x−(1/(√2))e^(−((iπ)/4)) )) + (c/(x−(1/(√2))e^((i3π)/4) )) + (d/(x−(1/(√2))e^(−((i3π)/4)) ))  we have λ_i = (3/(4x_i ^3 )) ⇒  a = (3/(4 x_0 ^3 )) = (3/(4 .(1/(2(√2))) e^((i3π)/4) )) =3 ((√2)/2)  e^(−((i3π)/4))   b = (3/(4x_1 ^3 ))  = (3/(4 .(1/(2(√2)))e^(−((i3π)/4)) )) =((3(√2))/2) e^((i3π)/4)   c   = (3/(4 x_2 ^3 )) = (3/(4 .(1/(2(√2)))e^(i((9π)/4)) )) = ((3(√2))/2) e^(−((i9π)/4))  =((3(√2))/2) e^(−((iπ)/4))   d =  (3/(4 x_3 ^3 )) = (3/(4 .(1/(2(√2)))e^(−((i9π)/4)) ))  = ((3(√2))/2) e^((i9π)/4)   =((3(√2))/2) e^((iπ)/4)

1)wehaveF(x)=3(2)4+x4=3((2)2+(x2)2=3(x2+2)24x2=3(x22x+2)(x2+2x+2)rootsofx22x+2Δ=12=1=(i)2x0=1+i=12eiπ4x1=1i=12eiπ4rootsofx2+2x+2Δ=12=1x2=1+i=12ei3π4x3=1i=12ei3π4F(x)=3(xx0)(xx1)(xx2)(xx3)=3(x12eiπ4)(x12eiπ4)(x12ei3π4)(x12ei3π4)=ax12eiπ4+bx12eiπ4+cx12ei3π4+dx12ei3π4wehaveλi=34xi3a=34x03=34.122ei3π4=322ei3π4b=34x13=34.122ei3π4=322ei3π4c=34x23=34.122ei9π4=322ei9π4=322eiπ4d=34x33=34.122ei9π4=322ei9π4=322eiπ4

Commented by abdo mathsup 649 cc last updated on 15/Jul/18

2) let put  A(ξ) = ∫_(−ξ) ^(+ξ)     (dx/(x−z))  we have   lim_(ξ→+∞)  A(ξ)= ∫_(−∞) ^(+∞)   (dx/(x−z)) let z = α +iβ  A(ξ) = ∫_(−ξ) ^ξ    (dx/(x−α −iβ))  = ∫_(−ξ) ^(+ξ)      ((x−α +iβ)/((x−α)^(2 )  +β^2 )) dx  = ∫_(−ξ) ^ξ     ((x−α)/((x−α)^2  +β^2 ))dx  +iβ ∫_(−ξ) ^ξ    (dx/((x−α)^2  +β^2 )) but  ∫_(−ξ) ^ξ    ((x−α)/((x−α)^2  +β^2 )) dx = (1/2)[ln∣(x−α)^2  +β^2 ∣]_(−ξ) ^(+ξ)   = (1/2)ln((((ξ−α)^2  +β^2 )/((ξ+α)^2  +β^2 )))→0 when ξ→+∞  changement x−α = βt give  ∫_(−ξ) ^ξ      (dx/((x−α)^2  +β^2 )) = ∫_((−ξ−α)/β) ^((ξ−α)/β)     (1/(β^2 (1+t^2 ))) β dt  = (1/β) [ arctant]_((−ξ−α)/β) ^((ξ−α)/β)  =(1/β) { arctan(((ξ−α)/β))+arctan(((ξ+α)/β))}  ⇒iβ ∫_(−ξ) ^ξ    (dx/((x−α)^2  +β^2 )) =i{ arctan(((ξ−α)/β)) +arctan(((ξ+α)/β))}  so if β>0  arctan(((ξ −α)/β)) +arctan(((ξ +α)/β))_(ξ→+∞) →π  if β<0  arctan(((ξ−α)/β)) +arctan(((ξ +α)/β))→−π  so A(ξ) →iπ if β>0 and A(ξ)→−iπ if β<0  finally   ∫_(−∞) ^(+∞)    (dx/(x−z)) =iπ if Im(z)>0 and  ∫_(−∞) ^(+∞)    (dx/(x−z)) =−iπ if Im(z)<0 .

2)letputA(ξ)=ξ+ξdxxzwehavelimξ+A(ξ)=+dxxzletz=α+iβA(ξ)=ξξdxxαiβ=ξ+ξxα+iβ(xα)2+β2dx=ξξxα(xα)2+β2dx+iβξξdx(xα)2+β2butξξxα(xα)2+β2dx=12[ln(xα)2+β2]ξ+ξ=12ln((ξα)2+β2(ξ+α)2+β2)0whenξ+changementxα=βtgiveξξdx(xα)2+β2=ξαβξαβ1β2(1+t2)βdt=1β[arctant]ξαβξαβ=1β{arctan(ξαβ)+arctan(ξ+αβ)}iβξξdx(xα)2+β2=i{arctan(ξαβ)+arctan(ξ+αβ)}soifβ>0arctan(ξαβ)+arctan(ξ+αβ)ξ+πifβ<0arctan(ξαβ)+arctan(ξ+αβ)πsoA(ξ)iπifβ>0andA(ξ)iπifβ<0finally+dxxz=iπifIm(z)>0and+dxxz=iπifIm(z)<0.

Commented by math khazana by abdo last updated on 15/Jul/18

3) let I = ∫_(−∞) ^(+∞)   ((3dx)/(4+x^4 ))  I = (6/4) ∫_0 ^∞     (dx/(1+((x/(√2)))^4 )) =(3/2)∫_0 ^∞    (dx/(1+((x/(√2)))^4 ))  changement  ((x/(√2)))^4  =t give x=(√2) t^(1/4)   ∫_0 ^∞    (dx/(1+((x/(√2)))^4 )) =(1/4) ∫_0 ^∞     (((√2) )/(1+t)) t^((1/4)−1) dt  =((√2)/4) ∫_0 ^∞    (t^((1/4)−1) /(1+t)) dt = ((√2)/4) (π/(sin((π/4)))) =((π(√2))/(4 .((√2)/2)))  = (π/2) ⇒ I = (3/2) (π/2) =((3π)/4)

3)letI=+3dx4+x4I=640dx1+(x2)4=320dx1+(x2)4changement(x2)4=tgivex=2t140dx1+(x2)4=14021+tt141dt=240t1411+tdt=24πsin(π4)=π24.22=π2I=32π2=3π4

Terms of Service

Privacy Policy

Contact: info@tinkutara.com