Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 39971 by math2018 last updated on 14/Jul/18

a>0,b>0,  What is the minimum value of  ((b^2 +2)/(a+b))+(a^2 /(ab+1))   ?

$${a}>\mathrm{0},{b}>\mathrm{0}, \\ $$ $${What}\:{is}\:{the}\:{minimum}\:{value}\:{of} \\ $$ $$\frac{{b}^{\mathrm{2}} +\mathrm{2}}{{a}+{b}}+\frac{{a}^{\mathrm{2}} }{{ab}+\mathrm{1}}\:\:\:? \\ $$

Answered by tanmay.chaudhury50@gmail.com last updated on 14/Jul/18

(b^2 /(a+b))+(a^2 /(ab+1))+(2/(a+b))=x(say)  using AM>GM  ((a+b)/2)>(√(ab))    ((b^2 /2)/((a+b)/2))+((a^2 /2)/((ab+1)/2))+((2/2)/((a+b)/2))<((b^2 /2)/(√(ab)))+((a^2 /2)/(√(ab)))+((2/2)/(√(ab)))→y(say)  x<(b^2 /(2(√(ab))))+(a^2 /(2(√(ab))))+(2/(2(√(ab))))  x<((a^2 +b^2 +2)/(2(√(ab))))  x<((((a^2 +b^2 )/2)×2+2)/(2(√(ab))))  using  ((a^2 +b^2 )/2)>(√(a^2 b^2 ))    ((((a^2 +b^2 )/2)×2+2)/(2(√(ab))))>((2ab+2)/(2(√(ab))))→z(say)  y>((ab+1)/(√(ab)))  y>((((ab+1)/2)×2)/(√(ab)))→z    ((((ab+1)/2)×2)/(√(ab)))>(((√(ab)) ×2)/(√(ab)))  so z>2  given expression assumed to be x  x<y  y>z  z>2  i can not co relate between x and z

$$\frac{{b}^{\mathrm{2}} }{{a}+{b}}+\frac{{a}^{\mathrm{2}} }{{ab}+\mathrm{1}}+\frac{\mathrm{2}}{{a}+{b}}={x}\left({say}\right) \\ $$ $${using}\:{AM}>{GM} \\ $$ $$\frac{{a}+{b}}{\mathrm{2}}>\sqrt{{ab}} \\ $$ $$ \\ $$ $$\frac{\frac{{b}^{\mathrm{2}} }{\mathrm{2}}}{\frac{{a}+{b}}{\mathrm{2}}}+\frac{\frac{{a}^{\mathrm{2}} }{\mathrm{2}}}{\frac{{ab}+\mathrm{1}}{\mathrm{2}}}+\frac{\frac{\mathrm{2}}{\mathrm{2}}}{\frac{{a}+{b}}{\mathrm{2}}}<\frac{\frac{{b}^{\mathrm{2}} }{\mathrm{2}}}{\sqrt{{ab}}}+\frac{\frac{{a}^{\mathrm{2}} }{\mathrm{2}}}{\sqrt{{ab}}}+\frac{\frac{\mathrm{2}}{\mathrm{2}}}{\sqrt{{ab}}}\rightarrow{y}\left({say}\right) \\ $$ $${x}<\frac{{b}^{\mathrm{2}} }{\mathrm{2}\sqrt{{ab}}}+\frac{{a}^{\mathrm{2}} }{\mathrm{2}\sqrt{{ab}}}+\frac{\mathrm{2}}{\mathrm{2}\sqrt{{ab}}} \\ $$ $${x}<\frac{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} +\mathrm{2}}{\mathrm{2}\sqrt{{ab}}} \\ $$ $${x}<\frac{\frac{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }{\mathrm{2}}×\mathrm{2}+\mathrm{2}}{\mathrm{2}\sqrt{{ab}}} \\ $$ $${using}\:\:\frac{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }{\mathrm{2}}>\sqrt{{a}^{\mathrm{2}} {b}^{\mathrm{2}} }\:\: \\ $$ $$\frac{\frac{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }{\mathrm{2}}×\mathrm{2}+\mathrm{2}}{\mathrm{2}\sqrt{{ab}}}>\frac{\mathrm{2}{ab}+\mathrm{2}}{\mathrm{2}\sqrt{{ab}}}\rightarrow{z}\left({say}\right) \\ $$ $${y}>\frac{{ab}+\mathrm{1}}{\sqrt{{ab}}} \\ $$ $${y}>\frac{\frac{{ab}+\mathrm{1}}{\mathrm{2}}×\mathrm{2}}{\sqrt{{ab}}}\rightarrow{z} \\ $$ $$ \\ $$ $$\frac{\frac{{ab}+\mathrm{1}}{\mathrm{2}}×\mathrm{2}}{\sqrt{{ab}}}>\frac{\sqrt{{ab}}\:×\mathrm{2}}{\sqrt{{ab}}} \\ $$ $${so}\:{z}>\mathrm{2} \\ $$ $${given}\:{expression}\:{assumed}\:{to}\:{be}\:{x} \\ $$ $${x}<{y} \\ $$ $${y}>{z} \\ $$ $${z}>\mathrm{2} \\ $$ $${i}\:{can}\:{not}\:{co}\:{relate}\:{between}\:{x}\:{and}\:{z} \\ $$ $$ \\ $$ $$ \\ $$ $$ \\ $$

Commented bymath2018 last updated on 15/Jul/18

Thank you very much!

$${Thank}\:{you}\:{very}\:{much}! \\ $$

Answered by ajfour last updated on 14/Jul/18

 f(a,b)=((b^2 +2)/(a+b))+(a^2 /(ab+1))   < ((b^2 +2)/(2(√(ab))))+(a^2 /(2(√(ab))))  = (((a−b)^2 +2ab+2)/(2(√(ab))))     =(((a−b)^2 )/(2(√(ab)))) +(√(ab))+(1/(√(ab)))    the above expression has a  minimum of value equal to 2  for   a=b=1  hence   f_(min) (a,b) ≤ 2  .

$$\:{f}\left({a},{b}\right)=\frac{{b}^{\mathrm{2}} +\mathrm{2}}{{a}+{b}}+\frac{{a}^{\mathrm{2}} }{{ab}+\mathrm{1}} \\ $$ $$\:<\:\frac{{b}^{\mathrm{2}} +\mathrm{2}}{\mathrm{2}\sqrt{{ab}}}+\frac{{a}^{\mathrm{2}} }{\mathrm{2}\sqrt{{ab}}}\:\:=\:\frac{\left({a}−{b}\right)^{\mathrm{2}} +\mathrm{2}{ab}+\mathrm{2}}{\mathrm{2}\sqrt{{ab}}} \\ $$ $$\:\:\:=\frac{\left({a}−{b}\right)^{\mathrm{2}} }{\mathrm{2}\sqrt{{ab}}}\:+\sqrt{{ab}}+\frac{\mathrm{1}}{\sqrt{{ab}}} \\ $$ $$\:\:{the}\:{above}\:{expression}\:{has}\:{a} \\ $$ $${minimum}\:{of}\:{value}\:{equal}\:{to}\:\mathrm{2} \\ $$ $${for}\:\:\:{a}={b}=\mathrm{1} \\ $$ $${hence}\:\:\:{f}_{{min}} \left({a},{b}\right)\:\leqslant\:\mathrm{2}\:\:. \\ $$ $$ \\ $$

Commented bymath2018 last updated on 15/Jul/18

Thank you Sir!

$${Thank}\:{you}\:{Sir}! \\ $$ $$ \\ $$

Answered by math2018 last updated on 15/Jul/18

1° a+b≥ab+1  ((b^2 +2)/(a+b))+(a^2 /(ab+1))≥(((a^2 +1)+(b^2 +1))/(a+b))≥((2a+2b)/(a+b))=2;  2° a+b<ab+1  ((b^2 +2)/(a+b))+(a^2 /(ab+1))>((a^2 +b^2 +2)/(ab+1))≥((2ab+2)/(ab+1))=2  hence the minimum value is 2.

$$\mathrm{1}°\:{a}+{b}\geqslant{ab}+\mathrm{1} \\ $$ $$\frac{{b}^{\mathrm{2}} +\mathrm{2}}{{a}+{b}}+\frac{{a}^{\mathrm{2}} }{{ab}+\mathrm{1}}\geqslant\frac{\left({a}^{\mathrm{2}} +\mathrm{1}\right)+\left({b}^{\mathrm{2}} +\mathrm{1}\right)}{{a}+{b}}\geqslant\frac{\mathrm{2}{a}+\mathrm{2}{b}}{{a}+{b}}=\mathrm{2}; \\ $$ $$\mathrm{2}°\:{a}+{b}<{ab}+\mathrm{1} \\ $$ $$\frac{{b}^{\mathrm{2}} +\mathrm{2}}{{a}+{b}}+\frac{{a}^{\mathrm{2}} }{{ab}+\mathrm{1}}>\frac{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} +\mathrm{2}}{{ab}+\mathrm{1}}\geqslant\frac{\mathrm{2}{ab}+\mathrm{2}}{{ab}+\mathrm{1}}=\mathrm{2} \\ $$ $${hence}\:{the}\:{minimum}\:{value}\:{is}\:\mathrm{2}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com