Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 39985 by ajfour last updated on 14/Jul/18

Answered by ajfour last updated on 15/Jul/18

eq. of line  OBC :  y=x  eq. of AEC:    ytan θ=x−1  For point C :       x_C =y_C =(1/(1−tan θ))    ∠ADB =θ  so AD= cot θ  slope of CD be m         −m=(y_C /(1+cot θ−x_C ))                =(1/((1+cot θ)(1−tan θ)−1))             = (1/(−tan θ+cot θ−1))  tan ∠DAF = (1/m) =1+tan θ−cot θ  FD =ADsin ∠DAF          =cot θ×((1+tan θ−cot θ)/(√(1+(1+tan θ−cot θ)^2 )))  ∠BCE =(π/4)−θ      CE =BEcot ((π/4)−θ)               =((sin θ)/(tan ((π/4)−θ)))    Given CE = FD  ⇒ ((sin θ)/(tan ((π/4)−θ)))=cot θ×((1+tan θ−cot θ)/(√(1+(1+tan θ−cot θ)^2 )))  ⇒ ((sin θ(1+tan θ)tan θ)/(1−tan θ))=((1+tan θ−cot θ)/(√(1+(1+tan θ−cot θ)^2 )))  let  tan θ=t  ⇒  sin θ = (t/(√(1+t^2 )))  ⇒ ((t(1+t)t)/((√(1+t^2 ))(1−t)))=((1+t−(1/t))/(√(1+(1+t−(1/t))^2 )))  ⇒ ((t^4 (1+t)^2 )/((1+t^2 )(1−t)^2 ))=(((t+t^2 −1)^2 )/(t^2 +(t+t^2 −1)^2 ))  ⇒ t=tan θ ≈ 0.63923        θ ≈ 32.588° .

eq.oflineOBC:y=xeq.ofAEC:ytanθ=x1ForpointC:xC=yC=11tanθADB=θsoAD=cotθslopeofCDbemm=yC1+cotθxC=1(1+cotθ)(1tanθ)1=1tanθ+cotθ1tanDAF=1m=1+tanθcotθFD=ADsinDAF=cotθ×1+tanθcotθ1+(1+tanθcotθ)2BCE=π4θCE=BEcot(π4θ)=sinθtan(π4θ)GivenCE=FDsinθtan(π4θ)=cotθ×1+tanθcotθ1+(1+tanθcotθ)2sinθ(1+tanθ)tanθ1tanθ=1+tanθcotθ1+(1+tanθcotθ)2lettanθ=tsinθ=t1+t2t(1+t)t1+t2(1t)=1+t1t1+(1+t1t)2t4(1+t)2(1+t2)(1t)2=(t+t21)2t2+(t+t21)2t=tanθ0.63923θ32.588°.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com