Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 39993 by ajfour last updated on 14/Jul/18

Answered by tanmay.chaudhury50@gmail.com last updated on 14/Jul/18

let ∠AOT=θ  OT∥ toBC so ((AO)/(AC))=((AT)/(AB))=((OT)/(BC))  point T(cosθ,sinθ)  andpoint C(−1,0)  eqn   of OT is y=xtanθ  eqn ofCB is y=(x+1)tanθ  eqn of circle is x^2 +y^2 =1  solve y=(x+1)tanθ and x^2 +y^2 =1  x^2 +x^2 tan^2 θ+2xtan^2 θ+tan^2 θ−1=0  x^2 (sec^2 θ)+x(2tan^2 θ)+tan^2 θ−1=0  x^2 +2xsin^2 θ+sin^2 θ−cos^2 θ=0  x^2 +x(1−cos2θ)−(cos2θ)=0  x=((−(1−cos2θ)±(√(1−2cos2θ+cos^2 2θ+4cos2θ)))/2)  x=((−(1−cos2θ)±(1+cos2θ))/2)  x=((−1+cos2θ+1+cos2θ)/2),((−1+cos2θ−1−cos2θ)/2)  x=cos2θ,−1   when x=cos2θ  y=sin2θ  when x=−1  so y=0  so point C(−1,0) point P(cos2θ,sin2θ)  CP=(√((cos2θ +1)^2 +(sin2θ)^2 ))    =(√(co_ s^2 2θ+2cos2θ+1+sin^2 2θ))  =(√(2(1+cos2θ)))  =(√(4cos^2 θ))=2cosθ  where θ=∠AOT  wait...

letAOT=θOTtoBCsoAOAC=ATAB=OTBCpointT(cosθ,sinθ)andpointC(1,0)eqnofOTisy=xtanθeqnofCBisy=(x+1)tanθeqnofcircleisx2+y2=1solvey=(x+1)tanθandx2+y2=1x2+x2tan2θ+2xtan2θ+tan2θ1=0x2(sec2θ)+x(2tan2θ)+tan2θ1=0x2+2xsin2θ+sin2θcos2θ=0x2+x(1cos2θ)(cos2θ)=0x=(1cos2θ)±12cos2θ+cos22θ+4cos2θ2x=(1cos2θ)±(1+cos2θ)2x=1+cos2θ+1+cos2θ2,1+cos2θ1cos2θ2x=cos2θ,1whenx=cos2θy=sin2θwhenx=1soy=0sopointC(1,0)pointP(cos2θ,sin2θ)CP=(cos2θ+1)2+(sin2θ)2=cos22θ+2cos2θ+1+sin22θ=2(1+cos2θ)=4cos2θ=2cosθwhereθ=AOTwait...

Answered by ajfour last updated on 15/Jul/18

BC = 1+(a/2)  BP = 1−(a/2)  BC.BP =BT^(  2)  = 1−(a^2 /4)  OB^2 =1+BT^(  2)  = (1+(a/2))^2 −1  ⇒   1+1−(a^2 /4)=(a^2 /4)+a        ⇒   a^2 +2a−4=0    or      (a+1)^2 =5  ⇒              a=(√5)−1 .

BC=1+a2BP=1a2BC.BP=BT2=1a24OB2=1+BT2=(1+a2)211+1a24=a24+aa2+2a4=0or(a+1)2=5a=51.

Commented by tanmay.chaudhury50@gmail.com last updated on 15/Jul/18

hw BC and BP found...pls explain..

hwBCandBPfound...plsexplain..

Commented by tanmay.chaudhury50@gmail.com last updated on 15/Jul/18

yes i got it..perpedicuar from centre bisect the  chord...and perpendicular from centre  make a rectangle...opposite side are same equals   to 1

yesigotit..perpedicuarfromcentrebisectthechord...andperpendicularfromcentremakearectangle...oppositesidearesameequalsto1

Terms of Service

Privacy Policy

Contact: info@tinkutara.com