Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 39995 by behi83417@gmail.com last updated on 14/Jul/18

Answered by tanmay.chaudhury50@gmail.com last updated on 15/Jul/18

α+β=a+b+1   αβ=a+b  α+β−(a+b+1)=0  α+β−αβ−1=0  α(1−β)−(1−β)=0  (α−1)(1−β)=0  either ∝=1   or β=1  when α=1  β=a+b  or when β=1  ∝=a+b  let consider α=1   β=a+b  given αβ.(4α+9β)=5(α+β)   1(a+b)(4+9a+9b)=5(1+a+b)  k=a+b  k(4+9k)=5+5k  4k+9k^2 −5−5k=0  9k^2 −k−5=0  k=((1±(√(1+180)))/(18))=((1±(√(181)))/(18))=a+b=β  1)(((√α) +1)/β)+(((√(β )) +1)/α)  =((1+1)/(a+b))+(((√(a+b)) +1)/1)  putting a+b=((1±(√(181)))/(18))  we can find...the value..

α+β=a+b+1αβ=a+bα+β(a+b+1)=0α+βαβ1=0α(1β)(1β)=0(α1)(1β)=0either∝=1orβ=1whenα=1β=a+borwhenβ=1∝=a+bletconsiderα=1β=a+bgivenαβ.(4α+9β)=5(α+β)1(a+b)(4+9a+9b)=5(1+a+b)k=a+bk(4+9k)=5+5k4k+9k255k=09k2k5=0k=1±1+18018=1±18118=a+b=β1)α+1β+β+1α=1+1a+b+a+b+11puttinga+b=1±18118wecanfind...thevalue..

Answered by MJS last updated on 15/Jul/18

α+β=a+b+1  αβ=a+b  α+β=αβ+1 ⇒ α=1 ∨ β=1    αβ(4α+9β)=5(α+β)  case 1: α=1  β^2 −(1/9)β−(5/9)=0  β=(1/(18))±((√(181))/(18))  (((√α)+1)/β)+(((√β)+1)/α)=  =((4−(√(181)))/5)+((√(−2+2(√(181))))/6)i ∨ ((4+(√(181)))/5)+((√(2+2(√(181))))/6)  α(√β)+β(√α)+(√(αβ))=  =((1−(√(181)))/(18))+((√(−2+2(√(181))))/3)i ∨ ((1+(√(181)))/(18))+((√(2+2(√(181))))/3)    case 2: β=1  α^2 +α−(5/4)=0  α=−(1/2)±((√6)/2)  (((√α)+1)/β)+(((√β)+1)/α)=  =((9−4(√6))/5)+((√(2+2(√6)))/2)i ∨ ((9+4(√6))/5)+((√(−2+2(√6)))/2)  α(√β)+β(√α)+(√(αβ))=  =−((1+(√6))/2)+i(√(2+2(√6))) ∨ ((−1+(√6))/2)+(√(−2+2(√6)))

α+β=a+b+1αβ=a+bα+β=αβ+1α=1β=1αβ(4α+9β)=5(α+β)case1:α=1β219β59=0β=118±18118α+1β+β+1α==41815+2+21816i4+1815+2+21816αβ+βα+αβ==118118+2+21813i1+18118+2+21813case2:β=1α2+α54=0α=12±62α+1β+β+1α==9465+2+262i9+465+2+262αβ+βα+αβ==1+62+i2+261+62+2+26

Commented by tanmay.chaudhury50@gmail.com last updated on 15/Jul/18

thank u sir...

thankusir...

Commented by behi83417@gmail.com last updated on 15/Jul/18

thank you sir MJS and sir tanmay.

thankyousirMJSandsirtanmay.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com