All Questions Topic List
Moderm Physics Questions
Previous in All Question Next in All Question
Previous in Moderm Physics Next in Moderm Physics
Question Number 118633 by wsyip last updated on 18/Oct/20
(4.1)ψμ(x)≡⟨x,μ∣ψ⟩(4.2)ψμ(x−a)=[1−a∙∂∂x+12!(a∙∂∂x)2−…]ψμ(x)=exp(−a∙∂∂x)ψμ(x)=⟨x,μ∣exp(−ia∙ph¯)∣ψ⟩(4.3)∣ψ′⟩≡U(a)∣ψ⟩;U(a)≡exp(−ia∙p/h¯)translationoperator(4.4)ψμ(x−a)=⟨x,μ∣U(a)∣ψ⟩=⟨x,μ∣ψ′⟩=ψμ′(x)(4.5)ih¯∂∣ψ⟩∂ax=−ih¯∂∣ψ⟩∂x=px∣ψ⟩−−Passivetransformations(1)ψμ(x;a+y)=exp(a∙∂∂y)ψμ(x;y)(2)⟨x,μ;0∣U(−a)∣ψ⟩=ψμ(x+a;0)=ψμ(x;a)(4.6)∣x0,μ⟩=∫d3p∣p,μ⟩⟨p,μ∣x0,μ⟩=1h3/2∫d3pe−ix0∙p/h¯∣p,μ⟩(4.7)U(a)∣x0,μ⟩=1h3/2∫d3pe−ix0∙p/h¯U(a)∣p,μ⟩=1h3/2∫d3pe−i(x0+a)∙p/h¯∣p,μ⟩=∣x0,a⟩,μ⟩Operatorsfromexpectationvalues(1)⟨ψ∣A∣ψ⟩=⟨ψ∣B∣ψ⟩(2)λ(⟨∅∣A∣χ⟩−⟨∅∣B∣χ⟩)=λ∗(⟨χ∣B∣∅⟩−⟨χ∣A∣∅⟩)(4.8)1=⟨ψ′∣ψ′⟩=⟨ψ∣U+U∣ψ⟩unitiryoperatorU+U=I;U+=U−1(4.9)U(δθ)=I−iδθτ+O(δθ)2(4.10)I=U+(δθ)U(δθ)=I+iδθ((τ+−τ)+O(δθ)2(4.11)i∂∣ψ′⟩∂θ=τ∣ψ′⟩(4.12)U(θ)≡limN→∞(1−iθNτ)N=e−iθττ(hermition)=generatorofU&thetransformation(4.13)U(α)=exp(−iα∙J);Ji:angular−momentumoperators(4.14)i∂∣ψ⟩∂α=α^∙J∣ψ⟩q(4.15)paritytransformationP≡(−1000−1000−1);Px=−x(4.16)quantumparityoperatorP:Pψμ′(x)≡⟨x,μ∣P∣ψ⟩≡ψμ(Px)=ψμ(−x)=⟨−x,μ∣ψ⟩(4.17)ψμ″(x)=⟨x,μ∣P∣ψ′⟩=⟨−x,μ∣ψ′⟩=⟨−x,μ∣P∣ψ⟩=⟨x,μ∣ψ⟩=ψμ(x)(4.18)⟨∅∣P∣ψ⟩∗=∫d3x∑μ(⟨∅⇂x,μ⟩⟨x,μ⇂P⇂ψ⟩)∗=∫d3x∑μ(⟨∅⇂x,μ⟩⟨−x,μ⇂ψ⟩)∗=∫d3x∑μ(⟨ψ⇂−x,μ⟩⟨x,μ⇂P2⇂∅⟩)=∫d3x∑μ(⟨ψ⇂−x,μ⟩⟨−x,μ⇂P⇂∅⟩)=⟨ψ∣P∣∅⟩(4.19)Mirroroperators⟨x,y∣M∣ψ⟩=⟨y,x∣ψ⟩(4.20)U+(a)xU(a)=x+a(4.21)x+δa⋍(1+iδa∙ph¯)x(1−iδa∙ph¯)=x−ih¯[x,δa∙p]+O(δa)2(4.22)[xi,pj]=ih¯δij(4.23)U+(a)xU(a)=U+(a)U(a)x+U+(a)[x,U(a)]=x+U+(a)[x,U(a)](4.24)U+(a)xU(a)=x−ih¯U+(a)[x,a∙p]U(a)=x+aRotationsinordinaryspaceRT=R−1;det(R)=+1;R(α)α^=α^TrR(α)=1+2cos∣α∣;v′=v+α×v(4.25)R(α)⟨ψ∣x∣ψ⟩=⟨ψ′∣x∣ψ′⟩=⟨ψ∣U+(α)xU(α)∣ψ⟩(4.26)R(α)x=U+(α)xU(α)(4.27)x+δα×x⋍(1+iδα∙J)x(1−iδα∙J)=x+i[δα∙J,x]+O(δα)2(4.28)(δα×x)i=∑ijϵijkδαjxk(4.29)∑ijϵijkδαjxk=i∑jδαj[Jj,xi](4.30)[Ji,xj]=i∑kϵijkxk(4.31)[Ji,vj]=i∑kϵijkvk(4.32)[Ji,pj]=i∑kϵijkpk(4.33)[Ji,Jj]=i∑kϵijkJk(4.34)⟨ψ′∣S∣ψ′⟩=⟨ψ∣U+(α)SU(α)∣ψ⟩=⟨ψ∣S∣ψ⟩(4.35)S⋍(1+iδα∙J)S(1−iδα∙J)=S+iδα∙[J,S]+O(δα)2(4.36)[J,S]=0(4.37)[J,J2]=0(4.38)Theparityoperator:x→Px=−x−⟨ψ∣x∣ψ⟩=P⟨ψ∣x∣ψ⟩=⟨ψ′∣x∣ψ′⟩=⟨ψ∣P+xP∣ψ⟩(4.39){x,P}≡xP+Px=0(4.40){v,P}≡vP+Pv=0(4.41)v⇂ω′⟩=v(P⇂ω⟩)=−Pv⇂ω⟩=−ωP⇂ω⟩=−ω⇂ω′⟩(4.42)−⟨±∣v∣±⟩=P⟨±∣v∣±⟩=⟨±∣P+vP∣±⟩=(±)2⟨±∣v∣±⟩(4.43a)⟨x∣PV∣ψ⟩=⟨−x∣V∣ψ⟩=V(−x)⟨−x∣ψ⟩=V(x)⟨−x∣ψ⟩(4.43b)⟨x∣VP∣ψ⟩=V(x)⟨x∣P∣ψ⟩=V(x)⟨−x∣ψ⟩(4.44)p2P=∑kpkpkP=−∑kpkPpk=∑kPpkpk=Pp2⇒[p2,P]=0(4.45){P,[vi,Jj]}=i∑kϵijk{P,vk}=0(4.46)0={P,[vi,Jj]}=[{P,vi},Jj]−{[P,Jj],vi}=−{[P,Jj],vi}(4.47)[P,Jj]=λP(4.48)⟨ψ′∣J∣ψ′⟩=⟨ψ∣P+JP∣ψ⟩=⟨ψ∣J∣ψ⟩(4.48)⟨ψ∣M+xM∣ψ⟩=⟨ψ∣y∣ψ⟩Mirroroperators(4.50)M+xM=y⇒xM=My(4.51)∣ψ,t⟩=e−iHt/h¯∣ψ,0⟩(4.52)U(t)=e−iHt/h¯time−evolutionoperator(4.53)U(θ)U(t)∣ψ⟩=U(t)U(θ)∣ψ⟩(4.54a)⟨x∣VU(α)∣ψ⟩=V(x)⟨x∣U(α)∣ψ⟩=V(x)⟨R(α)x∣ψ⟩(4.54b)⟨x∣U(α)V∣ψ⟩=⟨R(α)x∣V∣ψ⟩=V(R(α)x)⟨R(α)x∣ψ⟩(4.55)H=∑ni=1pi22mi+∑i<jV(xi−xj)(4.56)∣ψ,t⟩=U(t)∣ψ,0⟩(4.57)Q∼t≡U+(t)QU(t)(4.58)⟨Q⟩t=⟨ψ,t∣Q∣ψ,t⟩=⟨ψ,0∣U+(t)QU(t)∣ψ,0⟩=⟨ψ,0∣Q∼t∣ψ,0⟩(4.59)⟨∅,t⇂ψ,t⟩=⟨∅,0⇂ψ,0⟩;∣∅,t⟩≡U(t)∣∅,0⟩(4.60)dQ∼tdt=dU+dtQU+U+QdUdt(4.61)dUdt=−iHh¯U⇒dU+dt=iHh¯U+(4.62)ih¯dQ∽tdt=−HU+QU+U+QUH=[Q∽t,H](4.63)exp(−iα∙J)≡R(α)(4.64)I=RT(α)R(α)=exp(−iα∙J)Texp(−iα∙J)=exp(−iα∙JT)exp(−iα∙J)(4.65)0=−in∙JTexp(−iθn∙JT)exp(−iθn∙J)+exp(−iθn∙JT)exp(−iθn∙J)(−in∙J)−in∙{JT+J}(4.66){RT(α)R(β)R(α)}β′=RT(α)R(β)β=RT(α)β′(4.67)RT(α)R(β)R(α)=R(β′)=R(R(−α)β)(4.68)(1+iα∙J)(1+iβ∙J)(1−iα∙J)⋍1−i(β−α×β)∙J(4.69)αiβj[Ji,Jj]=iαiβj∑kϵijkJk(4.70)[Ji,Jj]=i∑kϵijkJk(4.71)Prob(atx⇂ψ)=∑μ∣⟨x,μ⇂ψ⟩∣2(4.72)R(∅)=(cos∅−sin∅0sin∅cos∅0001)(4.73)Jz′=≡M∙Jz∙M+(4.74)Sx=12(010101010);Sy=12(0−i0i0−i0i0);Sz=(10000000−1)(4.75)⟨x∣p⟩=eip∙x/h¯(4.76)[{A,B},C]={A,[B,C]}+{[A,C],B}(4.77)G≡12(1−P)(4.78)S⟨ψ∣x∣ψ⟩=⟨ψ∣S+xS∣ψ⟩(4.79)Sij=δij−2ninj(4.80)V(x)=f(R)+λxy;R=x2+y2
Commented by Dwaipayan Shikari last updated on 18/Oct/20
Kindlydon′tmarkitasinappropiate.Therearemanyderivationsinphysics.
ATheoreticalphysicist
Terms of Service
Privacy Policy
Contact: info@tinkutara.com