Question and Answers Forum

All Questions      Topic List

Moderm Physics Questions

Previous in All Question      Next in All Question      

Previous in Moderm Physics      Next in Moderm Physics      

Question Number 118633 by wsyip last updated on 18/Oct/20

  (4.1)   ψ_μ (x)≡⟨x,μ∣ψ⟩  (4.2)   ψ_μ (x−a)=[1−a•(∂/∂x)+(1/(2!))(a•(∂/∂x))^2 −…]ψ_μ (x)        =exp(−a•(∂/∂x))ψ_μ (x)=⟨x,μ∣exp(−i((a•p)/h^� ))∣ψ⟩  (4.3)   ∣ψ^′ ⟩≡U(a)∣ψ⟩   ; U(a)≡exp(−ia•p/h^� ) translation operator  (4.4)   ψ_μ (x−a)=⟨x,μ∣U(a)∣ψ⟩=⟨x,μ∣ψ^′ ⟩=ψ_μ ^′ (x)  (4.5)   ih^� ((∂∣ψ⟩)/∂a_x )=−ih^� ((∂∣ψ⟩)/∂x)=p_x ∣ψ⟩−−  Passive transformations  (1)   ψ_μ (x;a+y)=exp(a•(∂/∂y))ψ_μ (x;y)  (2)   ⟨x,μ;0∣U(−a)∣ψ⟩=ψ_μ (x+a;0)=ψ_μ (x;a)  (4.6)   ∣x_0 ,μ⟩=∫d^3 p∣p,μ⟩⟨p,μ∣x_0 ,μ⟩=(1/h^(3/2) )∫d^3 pe^(−ix_0 •p/h^� ) ∣p,μ⟩  (4.7)   U(a)∣x_0 ,μ⟩=(1/h^(3/2) )∫d^3 pe^(−ix_0 •p/h^� ) U(a)∣p,μ⟩        =(1/h^(3/2) )∫d^3 pe^(−i(x_0 +a)•p/h^� ) ∣p,μ⟩        =∣x_0 ,a⟩,μ⟩  Operators from expectation values  (1)   ⟨ψ∣A∣ψ⟩=⟨ψ∣B∣ψ⟩  (2)   λ(⟨∅∣A∣χ⟩−⟨∅∣B∣χ⟩)=λ^∗ (⟨χ∣B∣∅⟩−⟨χ∣A∣∅⟩)  (4.8)   1=⟨ψ^′ ∣ψ^′ ⟩=⟨ψ∣U^+ U∣ψ⟩  unitiry operator U^+ U=I   ; U^+ =U^(−1)   (4.9)   U(δθ)=I−iδθτ+O(δθ)^2   (4.10)  I=U^+ (δθ)U(δθ)=I+iδθ((τ^+ −τ)+O(δθ)^2   (4.11)  i((∂∣ψ^′ ⟩)/∂θ)=τ∣ψ^′ ⟩  (4.12)  U(θ)≡lim_(N→∞) (1−i(θ/N)τ)^N =e^(−iθτ)         τ (hermition) = generator of U & the transformation  (4.13)  U(𝛂)=exp(−i𝛂•J)   ; J_i :angular-momentum operators  (4.14)  i((∂∣ψ⟩)/∂α)=𝛂^� •J∣ψ⟩q  (4.15)  parity transformation        P≡ (((−1),0,0),(0,(−1),0),(0,0,(−1)) )    ; Px=−x  (4.16)  quantum parity operator P:        P ψ_μ ^′ (x)≡⟨x,μ∣P∣ψ⟩≡ψ_μ (Px)=ψ_μ (−x)=⟨−x,μ∣ψ⟩  (4.17)  ψ_μ ^(′′) (x)=⟨x,μ∣P∣ψ^′ ⟩=⟨−x,μ∣ψ^′ ⟩        =⟨−x,μ∣P∣ψ⟩=⟨x,μ∣ψ⟩=ψ_μ (x)   (4.18)  ⟨∅∣P∣ψ⟩^∗ =∫d^3 xΣ_μ (⟨∅⇂x,μ⟩⟨x,μ⇂P⇂ψ⟩)^∗         =∫d^3 xΣ_μ (⟨∅⇂x,μ⟩⟨−x,μ⇂ψ⟩)^∗         =∫d^3 xΣ_μ (⟨ψ⇂−x,μ⟩⟨x,μ⇂P^2 ⇂∅⟩)        =∫d^3 xΣ_μ (⟨ψ⇂−x,μ⟩⟨−x,μ⇂P⇂∅⟩)=⟨ψ∣P∣∅⟩  (4.19)  Mirror operators        ⟨x,y∣M∣ψ⟩=⟨y,x∣ψ⟩  (4.20)  U^+ (a)xU(a)=x+a  (4.21)  x+δa⋍(1+i((δa•p)/h^� ))x(1−i((δa•p)/h^� ))        =x−(i/h^� )[x,δa•p]+O(δa)^2   (4.22)  [x_i ,p_j ]=ih^� δ_(ij)   (4.23)  U^+ (a)xU(a)=U^+ (a)U(a)x+U^+ (a)[x,U(a)]=x+U^+ (a)[x,U(a)]  (4.24)  U^+ (a)xU(a)=x−(i/h^� )U^+ (a)[x,a•p]U(a)=x+a  Rotations in ordinary space        R^T =R^(−1)    ; det(R)=+1   ; R(𝛂)𝛂^� =𝛂^�         TrR(𝛂)=1+2cos∣𝛂∣   ; v^′ =v+𝛂×v  (4.25)  R(𝛂)⟨ψ∣x∣ψ⟩=⟨ψ^′ ∣x∣ψ^′ ⟩=⟨ψ∣U^+ (𝛂)xU(𝛂)∣ψ⟩  (4.26)  R(𝛂)x=U^+ (𝛂)xU(𝛂)  (4.27)  x+δ𝛂×x⋍(1+iδ𝛂•J)x(1−iδ𝛂•J)        =x+i[δ𝛂•J,x]+O(δ𝛂)^2   (4.28)  (δ𝛂×x)_i =Σ_(ij) ε_(ijk) δα_j x_k   (4.29)  Σ_(ij) ε_(ijk) δα_j x_k =iΣ_j δα_j [J_j ,x_i ]  (4.30)  [J_i ,x_j ]=iΣ_k ε_(ijk) x_k   (4.31)  [J_i ,v_j ]=iΣ_k ε_(ijk) v_k   (4.32)  [J_i ,p_j ]=iΣ_k ε_(ijk) p_k   (4.33)  [J_i ,J_j ]=iΣ_k ε_(ijk) J_k   (4.34)  ⟨ψ^′ ∣S∣ψ^′ ⟩=⟨ψ∣U^+ (𝛂)SU(𝛂)∣ψ⟩=⟨ψ∣S∣ψ⟩  (4.35)  S⋍(1+iδ𝛂•J)S(1−iδ𝛂•J)        =S+iδ𝛂•[J,S]+O(δ𝛂)^2   (4.36)  [J,S]=0  (4.37)  [J,J^2 ]=0  (4.38)  The parity operator: x→Px=−x        −⟨ψ∣x∣ψ⟩=P⟨ψ∣x∣ψ⟩=⟨ψ^′ ∣x∣ψ^′ ⟩=⟨ψ∣P^+ xP∣ψ⟩  (4.39)  {x,P}≡xP+Px=0  (4.40)  {v,P}≡vP+Pv=0  (4.41)  v⇂𝛚^′ ⟩=v(P⇂𝛚⟩)=−Pv⇂𝛚⟩=−𝛚P⇂𝛚⟩=−𝛚⇂𝛚^′ ⟩  (4.42)  −⟨±∣v∣±⟩=P⟨±∣v∣±⟩=⟨±∣P^+ vP∣±⟩=(±)^2 ⟨±∣v∣±⟩  (4.43a) ⟨x∣PV∣ψ⟩=⟨−x∣V∣ψ⟩=V(−x)⟨−x∣ψ⟩=V(x)⟨−x∣ψ⟩  (4.43b) ⟨x∣VP∣ψ⟩=V(x)⟨x∣P∣ψ⟩=V(x)⟨−x∣ψ⟩  (4.44)  p^2 P=Σ_k p_k p_k P=−Σ_k p_k Pp_k =Σ_k Pp_k p_k =Pp^2         ⇒[p^2 ,P]=0  (4.45)  {P,[v_i ,J_j ]}=iΣ_k ε_(ijk) {P,v_k }=0  (4.46)  0={P,[v_i ,J_j ]}=[{P,v_i },J_j ]−{[P,J_j ],v_i }=−{[P,J_j ],v_i }  (4.47)  [P,J_j ]=λP  (4.48)  ⟨ψ^′ ∣J∣ψ^′ ⟩=⟨ψ∣P^+ JP∣ψ⟩=⟨ψ∣J∣ψ⟩  (4.48)  ⟨ψ∣M^+ xM∣ψ⟩=⟨ψ∣y∣ψ⟩   Mirror operators  (4.50)  M^+ xM=y ⇒ xM=My  (4.51)  ∣ψ,t⟩=e^(−iHt/h^� ) ∣ψ,0⟩  (4.52)  U(t)=e^(−iHt/h^� )    time-evolution operator  (4.53)  U(θ)U(t)∣ψ⟩=U(t)U(θ)∣ψ⟩  (4.54a) ⟨x∣VU(𝛂)∣ψ⟩=V(x)⟨x∣U(𝛂)∣ψ⟩=V(x)⟨R(𝛂)x∣ψ⟩  (4.54b) ⟨x∣U(𝛂)V∣ψ⟩=⟨R(𝛂)x∣V∣ψ⟩=V(R(𝛂)x)⟨R(𝛂)x∣ψ⟩  (4.55)  H=Σ_(i=1) ^n (p_i ^2 /(2m_i ))+Σ_(i<j) V(x_i −x_j )  (4.56)  ∣ψ,t⟩=U(t)∣ψ,0⟩  (4.57)  Q_t ^∼ ≡U^+ (t)QU(t)  (4.58)  ⟨Q⟩_t =⟨ψ,t∣Q∣ψ,t⟩=⟨ψ,0∣U^+ (t)QU(t)∣ψ,0⟩=⟨ψ,0∣Q_t ^∼ ∣ψ,0⟩  (4.59)  ⟨∅,t⇂ψ,t⟩=⟨∅,0⇂ψ,0⟩   ; ∣∅,t⟩≡U(t)∣∅,0⟩  (4.60)  (dQ_t ^∼ /dt)=(dU^+ /dt)QU+U^+ Q(dU/dt)  (4.61)  (dU/dt)=−((iH)/h^� )U⇒(dU^+ /dt)=((iH)/h^� )U^+   (4.62)  ih^� (dQ_t ^∽ /dt)=−HU^+ QU+U^+ QUH=[Q_t ^∽ ,H]  (4.63)  exp(−i𝛂•J)≡R(𝛂)  (4.64)  I=R^T (𝛂)R(𝛂)=exp(−i𝛂•J)^T exp(−i𝛂•J)        =exp(−i𝛂•J^T )exp(−i𝛂•J)  (4.65)  0=−in•J^T exp(−iθn•J^T )exp(−iθn•J)        +exp(−iθn•J^T )exp(−iθn•J)(−in•J)        −in•{J^T +J}  (4.66)  {R^T (𝛂)R(𝛃)R(𝛂)}𝛃^′ =R^T (𝛂)R(𝛃)𝛃=R^T (𝛂)𝛃^′   (4.67)  R^T (𝛂)R(𝛃)R(𝛂)=R(𝛃^′ )=R(R(−𝛂)𝛃)  (4.68)  (1+i𝛂•J)(1+i𝛃•J)(1−i𝛂•J)⋍1−i(𝛃−𝛂×𝛃)•J  (4.69)  α_i β_j [J_i ,J_j ]=iα_i β_j Σ_k ε_(ijk) J_k   (4.70)  [J_i ,J_j ]=iΣ_k ε_(ijk) J_k   (4.71)  Prob(at x⇂ψ)=Σ_μ ∣⟨x,μ⇂ψ⟩∣^2   (4.72)  R(∅)= (((cos ∅),(−sin ∅),0),((sin ∅),(cos ∅),0),(0,0,1) )  (4.73)  J_z ^′ =≡M•J_z •M^+   (4.74)  S_x =(1/( (√2))) ((0,1,0),(1,0,1),(0,1,0) )  ; S_y =(1/( (√2))) ((0,(−i),0),(i,0,(−i)),(0,i,0) )  ; S_z = ((1,0,0),(0,0,0),(0,0,(−1)) )   (4.75)  ⟨x∣p⟩=e^(ip•x/h^� )   (4.76)  [{A,B},C]={A,[B,C]}+{[A,C],B}  (4.77)  G≡(1/2)(1−P)  (4.78)  S⟨ψ∣x∣ψ⟩=⟨ψ∣S^+ xS∣ψ⟩  (4.79)  S_(ij) =δ_(ij) −2n_i n_j   (4.80)  V(x)=f(R)+λxy   ; R=(√(x^2 +y^2 ))

(4.1)ψμ(x)x,μψ(4.2)ψμ(xa)=[1ax+12!(ax)2]ψμ(x)=exp(ax)ψμ(x)=x,μexp(iaph¯)ψ(4.3)ψU(a)ψ;U(a)exp(iap/h¯)translationoperator(4.4)ψμ(xa)=x,μU(a)ψ=x,μψ=ψμ(x)(4.5)ih¯ψax=ih¯ψx=pxψPassivetransformations(1)ψμ(x;a+y)=exp(ay)ψμ(x;y)(2)x,μ;0U(a)ψ=ψμ(x+a;0)=ψμ(x;a)(4.6)x0,μ=d3pp,μp,μx0,μ=1h3/2d3peix0p/h¯p,μ(4.7)U(a)x0,μ=1h3/2d3peix0p/h¯U(a)p,μ=1h3/2d3pei(x0+a)p/h¯p,μ=∣x0,a,μOperatorsfromexpectationvalues(1)ψAψ=ψBψ(2)λ(AχBχ)=λ(χBχA)(4.8)1=ψψ=ψU+UψunitiryoperatorU+U=I;U+=U1(4.9)U(δθ)=Iiδθτ+O(δθ)2(4.10)I=U+(δθ)U(δθ)=I+iδθ((τ+τ)+O(δθ)2(4.11)iψθ=τψ(4.12)U(θ)limN(1iθNτ)N=eiθττ(hermition)=generatorofU&thetransformation(4.13)U(α)=exp(iαJ);Ji:angularmomentumoperators(4.14)iψα=α^Jψq(4.15)paritytransformationP(100010001);Px=x(4.16)quantumparityoperatorP:Pψμ(x)x,μPψψμ(Px)=ψμ(x)=x,μψ(4.17)ψμ(x)=x,μPψ=x,μψ=x,μPψ=x,μψ=ψμ(x)(4.18)Pψ=d3xμ(x,μx,μPψ)=d3xμ(x,μx,μψ)=d3xμ(ψx,μx,μP2)=d3xμ(ψx,μx,μP)=ψP(4.19)Mirroroperatorsx,yMψ=y,xψ(4.20)U+(a)xU(a)=x+a(4.21)x+δa(1+iδaph¯)x(1iδaph¯)=xih¯[x,δap]+O(δa)2(4.22)[xi,pj]=ih¯δij(4.23)U+(a)xU(a)=U+(a)U(a)x+U+(a)[x,U(a)]=x+U+(a)[x,U(a)](4.24)U+(a)xU(a)=xih¯U+(a)[x,ap]U(a)=x+aRotationsinordinaryspaceRT=R1;det(R)=+1;R(α)α^=α^TrR(α)=1+2cosα;v=v+α×v(4.25)R(α)ψxψ=ψxψ=ψU+(α)xU(α)ψ(4.26)R(α)x=U+(α)xU(α)(4.27)x+δα×x(1+iδαJ)x(1iδαJ)=x+i[δαJ,x]+O(δα)2(4.28)(δα×x)i=ijϵijkδαjxk(4.29)ijϵijkδαjxk=ijδαj[Jj,xi](4.30)[Ji,xj]=ikϵijkxk(4.31)[Ji,vj]=ikϵijkvk(4.32)[Ji,pj]=ikϵijkpk(4.33)[Ji,Jj]=ikϵijkJk(4.34)ψSψ=ψU+(α)SU(α)ψ=ψSψ(4.35)S(1+iδαJ)S(1iδαJ)=S+iδα[J,S]+O(δα)2(4.36)[J,S]=0(4.37)[J,J2]=0(4.38)Theparityoperator:xPx=xψxψ=Pψxψ=ψxψ=ψP+xPψ(4.39){x,P}xP+Px=0(4.40){v,P}vP+Pv=0(4.41)vω=v(Pω)=Pvω=ωPω=ωω(4.42)±v±=P±v±=±P+vP±=(±)2±v±(4.43a)xPVψ=xVψ=V(x)xψ=V(x)xψ(4.43b)xVPψ=V(x)xPψ=V(x)xψ(4.44)p2P=kpkpkP=kpkPpk=kPpkpk=Pp2[p2,P]=0(4.45){P,[vi,Jj]}=ikϵijk{P,vk}=0(4.46)0={P,[vi,Jj]}=[{P,vi},Jj]{[P,Jj],vi}={[P,Jj],vi}(4.47)[P,Jj]=λP(4.48)ψJψ=ψP+JPψ=ψJψ(4.48)ψM+xMψ=ψyψMirroroperators(4.50)M+xM=yxM=My(4.51)ψ,t=eiHt/h¯ψ,0(4.52)U(t)=eiHt/h¯timeevolutionoperator(4.53)U(θ)U(t)ψ=U(t)U(θ)ψ(4.54a)xVU(α)ψ=V(x)xU(α)ψ=V(x)R(α)xψ(4.54b)xU(α)Vψ=R(α)xVψ=V(R(α)x)R(α)xψ(4.55)H=ni=1pi22mi+i<jV(xixj)(4.56)ψ,t=U(t)ψ,0(4.57)QtU+(t)QU(t)(4.58)Qt=ψ,tQψ,t=ψ,0U+(t)QU(t)ψ,0=ψ,0Qtψ,0(4.59),tψ,t=,0ψ,0;,tU(t),0(4.60)dQtdt=dU+dtQU+U+QdUdt(4.61)dUdt=iHh¯UdU+dt=iHh¯U+(4.62)ih¯dQtdt=HU+QU+U+QUH=[Qt,H](4.63)exp(iαJ)R(α)(4.64)I=RT(α)R(α)=exp(iαJ)Texp(iαJ)=exp(iαJT)exp(iαJ)(4.65)0=inJTexp(iθnJT)exp(iθnJ)+exp(iθnJT)exp(iθnJ)(inJ)in{JT+J}(4.66){RT(α)R(β)R(α)}β=RT(α)R(β)β=RT(α)β(4.67)RT(α)R(β)R(α)=R(β)=R(R(α)β)(4.68)(1+iαJ)(1+iβJ)(1iαJ)1i(βα×β)J(4.69)αiβj[Ji,Jj]=iαiβjkϵijkJk(4.70)[Ji,Jj]=ikϵijkJk(4.71)Prob(atxψ)=μx,μψ2(4.72)R()=(cossin0sincos0001)(4.73)Jz=≡MJzM+(4.74)Sx=12(010101010);Sy=12(0i0i0i0i0);Sz=(100000001)(4.75)xp=eipx/h¯(4.76)[{A,B},C]={A,[B,C]}+{[A,C],B}(4.77)G12(1P)(4.78)Sψxψ=ψS+xSψ(4.79)Sij=δij2ninj(4.80)V(x)=f(R)+λxy;R=x2+y2

Commented by Dwaipayan Shikari last updated on 18/Oct/20

Kindly don′t mark it as inappropiate. There are many   derivations in physics.

Kindlydontmarkitasinappropiate.Therearemanyderivationsinphysics.

Commented by Dwaipayan Shikari last updated on 18/Oct/20

A Theoretical  physicist

ATheoreticalphysicist

Terms of Service

Privacy Policy

Contact: info@tinkutara.com