All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 40007 by math khazana by abdo last updated on 15/Jul/18
findthevalueof∫0∞dx1+x6byusingthevalueof∫−∞+∞dxx−zwithz∈CandIm(z)≠0
Commented by prof Abdo imad last updated on 16/Jul/18
letI=∫0∞dx1+x62I=∫−∞+∞dx1+x6letdrcomposeinsideC(x)F(x)=1x6+1polesofF?x6=−1⇒xk=ei2k+1)π6withk∈[[0,5]]x0=eiπ6,x1=eiπ2,x2=ei5π6=−e−iπ6x3=ei7π6=−eiπ6,x4=ei9π6=ei3π2,x5=ei11π6=e−iπ6wehaveλi=16xi5=−16xi⇒F(x)=−16{x0x−x0+x1x−x1+x2x−x2+x3x−x3+x4x−x4+x5x−x5}⇒∫−∞+∞F(x)dx=−16{x0∫−∞+∞dxx−x0+x1∫−∞+∞dxx−x1+x2∫−∞+∞dxx−x2+x3∫−∞+∞dxx−x3+x4∫−∞+∞dxx−x4+x5∫−∞+∞dxx−x5}butwehaveprovedthat∫−∞+∞dxx−z=iπifIm(z)>0and−iπifIm(z)<0∫−∞+∞F(x)dx=−16{x0(iπ)+x1(iπ)+x2(iπ)+x3(−iπ)+x4(−iπ)+x5(−iπ)}=−iπ6{x0+x1+x2−x3−x4−x5}=−iπ6{eiπ6+i−e−iπ6+eiπ6−ei3π2−e−iπ6}=−iπ6{2i+2(eiπ6−e−iπ6)}=π3−iπ32i12=π3+π3=2π32I=2π3⇒I=π3.
Terms of Service
Privacy Policy
Contact: info@tinkutara.com