Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 40007 by math khazana by abdo last updated on 15/Jul/18

find thevalue of   ∫_0 ^∞     (dx/(1 +x^6 ))  by using the  value of  ∫_(−∞) ^(+∞)   (dx/(x−z)) with z ∈ C and Im(z)≠0

findthevalueof0dx1+x6byusingthevalueof+dxxzwithzCandIm(z)0

Commented by prof Abdo imad last updated on 16/Jul/18

let I = ∫_0 ^∞     (dx/(1+x^6 ))  2I = ∫_(−∞) ^(+∞)    (dx/(1+x^6 )) let drcompose inside C(x)  F(x)= (1/(x^6 +1))  poles of F?  x^6  =−1  ⇒ x_k = e^(i((2k+1)π)/6))   with k∈[[0,5]]  x_0 = e^((iπ)/6)   , x_1 = e^(i(π/2))    , x_2 = e^((i5π)/6)  = −e^(−((iπ)/6))   x_3 = e^(i((7π)/6))  =−e^((iπ)/6)  , x_4 =e^((i9π)/6)  =e^((i3π)/2)   , x_5 = e^((i11π)/6)  =e^(−((iπ)/6))   we have λ_i = (1/(6x_i ^5 )) =−(1/6) x_i  ⇒  F(x)=−(1/6){  (x_0 /(x−x_0 )) +(x_1 /(x−x_1 )) +(x_2 /(x−x_2 )) +(x_3 /(x−x_3 ))  + (x_4 /(x−x_4 )) +(x_5 /(x−x_5 ))} ⇒  ∫_(−∞) ^(+∞)  F(x)dx =−(1/6){ x_0 ∫_(−∞) ^(+∞)  (dx/(x−x_0 )) +x_1  ∫_(−∞) ^(+∞)  (dx/(x−x_1 ))  +x_2  ∫_(−∞) ^(+∞)   (dx/(x−x_2 )) + x_3   ∫_(−∞) ^(+∞)   (dx/(x−x_3 )) + x_4   ∫_(−∞) ^(+∞)  (dx/(x−x_4 ))  +x_5  ∫_(−∞) ^(+∞)    (dx/(x−x_5 ))} but we have proved that  ∫_(−∞) ^(+∞)    (dx/(x−z))  =iπ  if Im(z)>0 and −iπ if Im(z)<0  ∫_(−∞) ^(+∞)  F(x)dx =−(1/6){x_0 (iπ) +x_1 (iπ) +x_2 (iπ)  +x_3 (−iπ)+x_4 (−iπ) +x_5 (−iπ)}  =−((iπ)/6){ x_0  +x_1  +x_2  −x_3  −x_4 −x_5 }  =−((iπ)/6){ e^((iπ)/6)  + i  −e^(−((iπ)/6))  +e^((iπ)/6)  −e^((i3π)/2)  −e^(−((iπ)/6)) }  =−((iπ)/6){  2i  +2(e^((iπ)/6)  −e^(−((iπ)/6)) )}  =(π/3) −((iπ)/3) 2i (1/2) =(π/3) +(π/3) =((2π)/3)  2I =((2π)/3) ⇒ I =(π/3) .

letI=0dx1+x62I=+dx1+x6letdrcomposeinsideC(x)F(x)=1x6+1polesofF?x6=1xk=ei2k+1)π6withk[[0,5]]x0=eiπ6,x1=eiπ2,x2=ei5π6=eiπ6x3=ei7π6=eiπ6,x4=ei9π6=ei3π2,x5=ei11π6=eiπ6wehaveλi=16xi5=16xiF(x)=16{x0xx0+x1xx1+x2xx2+x3xx3+x4xx4+x5xx5}+F(x)dx=16{x0+dxxx0+x1+dxxx1+x2+dxxx2+x3+dxxx3+x4+dxxx4+x5+dxxx5}butwehaveprovedthat+dxxz=iπifIm(z)>0andiπifIm(z)<0+F(x)dx=16{x0(iπ)+x1(iπ)+x2(iπ)+x3(iπ)+x4(iπ)+x5(iπ)}=iπ6{x0+x1+x2x3x4x5}=iπ6{eiπ6+ieiπ6+eiπ6ei3π2eiπ6}=iπ6{2i+2(eiπ6eiπ6)}=π3iπ32i12=π3+π3=2π32I=2π3I=π3.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com