Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 40040 by abdo mathsup 649 cc last updated on 15/Jul/18

let A_n = ∫_0 ^n   e^(−n( x+2−[x])) dx  with n integr natural  1) calculate A_n   2) find  lim_(n→+∞)  A_n   3) study the convergence of   Σ_n A_n

$${let}\:{A}_{{n}} =\:\int_{\mathrm{0}} ^{{n}} \:\:{e}^{−{n}\left(\:{x}+\mathrm{2}−\left[{x}\right]\right)} {dx}\:\:{with}\:{n}\:{integr}\:{natural} \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:{A}_{{n}} \\ $$$$\left.\mathrm{2}\right)\:{find}\:\:{lim}_{{n}\rightarrow+\infty} \:{A}_{{n}} \\ $$$$\left.\mathrm{3}\right)\:{study}\:{the}\:{convergence}\:{of}\:\:\:\sum_{{n}} {A}_{{n}} \\ $$

Commented by abdo mathsup 649 cc last updated on 17/Jul/18

1) we have  A_n = Σ_(k=0) ^(n−1)   ∫_k ^(k+1)  e^(−n(x+2−k)) dx  = Σ_(k=0) ^(n−1)     e^(−n(2−k))   ∫_k ^(k+1)  e^(−nx) dx  =Σ_(k=0) ^(n−1)   e^(n(k−2))   [−(1/n) e^(−nx) ]_k ^(k+1)   = (1/n)Σ_(k=0) ^(n−1)   e^(n(k−2)) { e^(−nk)  −e^(−(n+1)k) }  =(1/n) Σ_(k=0) ^(n−1)   e^(−2n)    −(1/n) Σ_(k=0) ^(n−1)    e^(−2n−k)   = e^(−2n)    −(e^(−2n) /n) Σ_(k=0) ^(n−1)  (e^(−1) )^k   A_n =e^(−2n)   −(e^(−2n) /n) ((1−(e^(−1) )^n )/(1−e^(−1) ))  2) we have lim_(n→+∞)  e^(−2n)  =0  lim_(n→+∞)   (e^(−2n) /n) =0  and lim_(n→+∞)   ((1− e^(−n) )/(2−e^(−1) )) =(1/(1−e^(−1) ))  ⇒ lim_(n→+∞)   A_n =0  3) we have Σ_(n=1) ^∞  A_n = Σ_(n=1) ^∞  e^(−2n)  −(1/(1−e^(−1) ))Σ_(n=1) ^∞  (e^(−2n) /n)  + (1/(1−e^(−1) )) Σ_(n=1) ^∞   (e^(−3n) /n) but we have   Σ_(n=1) ^∞  e^(−2n)  =Σ_(n=1) ^∞  (e^(−2) )^n  =(1/(1−e^(−2) ))  Σ_(n=1) ^∞   (e^(−2n) /n) =Σ_(n=1) ^∞   (((e^(−2) )^n )/n) =−ln(1−e^(−2) )  Σ_(n=1) ^∞    (e^(−3n) /n) =−ln(1−e^(−3) ) ⇒Σ A_n  is convergent  and Σ_(n≥1)  A_n =  (1/(1−e^(−2) )) +(1/(1−e^(−1) ))ln(1−e^(−2) )  −(1/(1−e^(−1) ))ln(1−e^(−3) ) .

$$\left.\mathrm{1}\right)\:{we}\:{have}\:\:{A}_{{n}} =\:\sum_{{k}=\mathrm{0}} ^{{n}−\mathrm{1}} \:\:\int_{{k}} ^{{k}+\mathrm{1}} \:{e}^{−{n}\left({x}+\mathrm{2}−{k}\right)} {dx} \\ $$$$=\:\sum_{{k}=\mathrm{0}} ^{{n}−\mathrm{1}} \:\:\:\:{e}^{−{n}\left(\mathrm{2}−{k}\right)} \:\:\int_{{k}} ^{{k}+\mathrm{1}} \:{e}^{−{nx}} {dx} \\ $$$$=\sum_{{k}=\mathrm{0}} ^{{n}−\mathrm{1}} \:\:{e}^{{n}\left({k}−\mathrm{2}\right)} \:\:\left[−\frac{\mathrm{1}}{{n}}\:{e}^{−{nx}} \right]_{{k}} ^{{k}+\mathrm{1}} \\ $$$$=\:\frac{\mathrm{1}}{{n}}\sum_{{k}=\mathrm{0}} ^{{n}−\mathrm{1}} \:\:{e}^{{n}\left({k}−\mathrm{2}\right)} \left\{\:{e}^{−{nk}} \:−{e}^{−\left({n}+\mathrm{1}\right){k}} \right\} \\ $$$$=\frac{\mathrm{1}}{{n}}\:\sum_{{k}=\mathrm{0}} ^{{n}−\mathrm{1}} \:\:{e}^{−\mathrm{2}{n}} \:\:\:−\frac{\mathrm{1}}{{n}}\:\sum_{{k}=\mathrm{0}} ^{{n}−\mathrm{1}} \:\:\:{e}^{−\mathrm{2}{n}−{k}} \\ $$$$=\:{e}^{−\mathrm{2}{n}} \:\:\:−\frac{{e}^{−\mathrm{2}{n}} }{{n}}\:\sum_{{k}=\mathrm{0}} ^{{n}−\mathrm{1}} \:\left({e}^{−\mathrm{1}} \right)^{{k}} \\ $$$${A}_{{n}} ={e}^{−\mathrm{2}{n}} \:\:−\frac{{e}^{−\mathrm{2}{n}} }{{n}}\:\frac{\mathrm{1}−\left({e}^{−\mathrm{1}} \right)^{{n}} }{\mathrm{1}−{e}^{−\mathrm{1}} } \\ $$$$\left.\mathrm{2}\right)\:{we}\:{have}\:{lim}_{{n}\rightarrow+\infty} \:{e}^{−\mathrm{2}{n}} \:=\mathrm{0} \\ $$$${lim}_{{n}\rightarrow+\infty} \:\:\frac{{e}^{−\mathrm{2}{n}} }{{n}}\:=\mathrm{0}\:\:{and}\:{lim}_{{n}\rightarrow+\infty} \:\:\frac{\mathrm{1}−\:{e}^{−{n}} }{\mathrm{2}−{e}^{−\mathrm{1}} }\:=\frac{\mathrm{1}}{\mathrm{1}−{e}^{−\mathrm{1}} } \\ $$$$\Rightarrow\:{lim}_{{n}\rightarrow+\infty} \:\:{A}_{{n}} =\mathrm{0} \\ $$$$\left.\mathrm{3}\right)\:{we}\:{have}\:\sum_{{n}=\mathrm{1}} ^{\infty} \:{A}_{{n}} =\:\sum_{{n}=\mathrm{1}} ^{\infty} \:{e}^{−\mathrm{2}{n}} \:−\frac{\mathrm{1}}{\mathrm{1}−{e}^{−\mathrm{1}} }\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{{e}^{−\mathrm{2}{n}} }{{n}} \\ $$$$+\:\frac{\mathrm{1}}{\mathrm{1}−{e}^{−\mathrm{1}} }\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\frac{{e}^{−\mathrm{3}{n}} }{{n}}\:{but}\:{we}\:{have}\: \\ $$$$\sum_{{n}=\mathrm{1}} ^{\infty} \:{e}^{−\mathrm{2}{n}} \:=\sum_{{n}=\mathrm{1}} ^{\infty} \:\left({e}^{−\mathrm{2}} \right)^{{n}} \:=\frac{\mathrm{1}}{\mathrm{1}−{e}^{−\mathrm{2}} } \\ $$$$\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\frac{{e}^{−\mathrm{2}{n}} }{{n}}\:=\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\frac{\left({e}^{−\mathrm{2}} \right)^{{n}} }{{n}}\:=−{ln}\left(\mathrm{1}−{e}^{−\mathrm{2}} \right) \\ $$$$\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\:\frac{{e}^{−\mathrm{3}{n}} }{{n}}\:=−{ln}\left(\mathrm{1}−{e}^{−\mathrm{3}} \right)\:\Rightarrow\Sigma\:{A}_{{n}} \:{is}\:{convergent} \\ $$$${and}\:\sum_{{n}\geqslant\mathrm{1}} \:{A}_{{n}} =\:\:\frac{\mathrm{1}}{\mathrm{1}−{e}^{−\mathrm{2}} }\:+\frac{\mathrm{1}}{\mathrm{1}−{e}^{−\mathrm{1}} }{ln}\left(\mathrm{1}−{e}^{−\mathrm{2}} \right) \\ $$$$−\frac{\mathrm{1}}{\mathrm{1}−{e}^{−\mathrm{1}} }{ln}\left(\mathrm{1}−{e}^{−\mathrm{3}} \right)\:. \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com