Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 40043 by abdo mathsup 649 cc last updated on 15/Jul/18

find  the value of  ∫_(−1) ^(+∞)   (√(x+1))e^(−x)  dx

$${find}\:\:{the}\:{value}\:{of}\:\:\int_{−\mathrm{1}} ^{+\infty} \:\:\sqrt{{x}+\mathrm{1}}{e}^{−{x}} \:{dx} \\ $$$$ \\ $$$$ \\ $$

Answered by prof Abdo imad last updated on 22/Jul/18

changement (√(x+1))=t give x+1=t^2   I = ∫_0 ^∞   t e^(−(t^2 −1))  2t dt  =2e  ∫_0 ^∞   t^2  e^(−t^2 ) dt  and by partsu^′  =t e^(−t^2 )    v=t  I =2e{ [−(1/2) e^(−t^2 )  t]_0 ^(+∞)  +∫_0 ^∞   (1/2) e^(−t^2 ) dt}  = e  ∫_0 ^∞   e^(−t^2 ) dt  = e ((√π)/2)  ⇒  I = (e/2)(√π).

$${changement}\:\sqrt{{x}+\mathrm{1}}={t}\:{give}\:{x}+\mathrm{1}={t}^{\mathrm{2}} \\ $$$${I}\:=\:\int_{\mathrm{0}} ^{\infty} \:\:{t}\:{e}^{−\left({t}^{\mathrm{2}} −\mathrm{1}\right)} \:\mathrm{2}{t}\:{dt} \\ $$$$=\mathrm{2}{e}\:\:\int_{\mathrm{0}} ^{\infty} \:\:{t}^{\mathrm{2}} \:{e}^{−{t}^{\mathrm{2}} } {dt}\:\:{and}\:{by}\:{partsu}^{'} \:={t}\:{e}^{−{t}^{\mathrm{2}} } \:\:\:{v}={t} \\ $$$${I}\:=\mathrm{2}{e}\left\{\:\left[−\frac{\mathrm{1}}{\mathrm{2}}\:{e}^{−{t}^{\mathrm{2}} } \:{t}\right]_{\mathrm{0}} ^{+\infty} \:+\int_{\mathrm{0}} ^{\infty} \:\:\frac{\mathrm{1}}{\mathrm{2}}\:{e}^{−{t}^{\mathrm{2}} } {dt}\right\} \\ $$$$=\:{e}\:\:\int_{\mathrm{0}} ^{\infty} \:\:{e}^{−{t}^{\mathrm{2}} } {dt}\:\:=\:{e}\:\frac{\sqrt{\pi}}{\mathrm{2}}\:\:\Rightarrow \\ $$$${I}\:=\:\frac{{e}}{\mathrm{2}}\sqrt{\pi}. \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com