All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 40044 by abdo mathsup 649 cc last updated on 15/Jul/18
letf(t)=∫0π2ln(cosx+tsinx)1)calculatef(0)2)calculatef′(t)thenfindasimpleformoff(t)3)calculate∫0π2ln(cosx+2sinx)dx4)calculate∫0π2ln(3cosx+sinx)dx
Commented by abdo mathsup 649 cc last updated on 15/Jul/18
f(t)=∫0π2ln(cosx+tsinx)dx.
Commented by maxmathsup by imad last updated on 22/Jul/18
1)wehavef(t)=∫0π2ln(cosx+tsinx)dx⇒f(0)=∫0π2ln(cosx)dx=−π2ln(2)(thisvalueisproved)2)f′(t)=∫0π2∂∂t{ln(cosx+tsinx)}dx=∫0π2sinxcosx+tsinxdxhangementtan(x2)=ugivef′(t)=∫012u1+u21−u21+u2+t2u1+u22du1+u2=∫014udu(1+u2){1−u2+2tu}=−∫014udu(1+u2){u2−2tu−1}letdecomposeF(u)=4u(u2+1)(u2−2tu−1)rootsofu2−2tu−1Δ′=t2+1⇒u1=t+1+t2andu2=t−1+t2andF(u)=4u(u−u1)(u−u2)(1+u2)F(u)=au−u1+bu−u2+cu+du2+1a=limu→u1(u−u1)F(u)=4u1(u1−u2)(1+u12)=4(t+1+t2)21+t2(1+(t+1+t2)2b=limu→u2(u−u2)F(u)=4u2(u2−u1)(1+u22)=4(t−1+t2)−21+t2{1+(t−1+t2)2limu→+∞uF(u)=0=a+b+c⇒c=−a−b⇒F(u)=au−u1+bu−u2+(−a−b)u+du2+1F(0)=0=−au1−bu2+d⇒d=au1+bu2....becontinued...
Terms of Service
Privacy Policy
Contact: info@tinkutara.com