Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 40044 by abdo mathsup 649 cc last updated on 15/Jul/18

let f(t) = ∫_0 ^(π/2) ln( cosx +t sinx)  1) calculate f(0)  2) calculate f^′ (t) then find  a simple form of f(t)  3) calculate  ∫_0 ^(π/2) ln(cosx +2 sinx)dx  4) calculate  ∫_0 ^(π/2) ln((√3)cosx +sinx)dx

letf(t)=0π2ln(cosx+tsinx)1)calculatef(0)2)calculatef(t)thenfindasimpleformoff(t)3)calculate0π2ln(cosx+2sinx)dx4)calculate0π2ln(3cosx+sinx)dx

Commented by abdo mathsup 649 cc last updated on 15/Jul/18

f(t) =∫_0 ^(π/2) ln(cosx +t sinx)dx.

f(t)=0π2ln(cosx+tsinx)dx.

Commented by maxmathsup by imad last updated on 22/Jul/18

1) we have f(t)= ∫_0 ^(π/2) ln(cosx+t sinx)dx ⇒f(0)=∫_0 ^(π/2) ln(cosx)dx=−(π/2)ln(2)  (this value is proved )  2)f^′ (t) =∫_0 ^(π/2)    (∂/∂t){ln(cosx +tsinx)}dx  =∫_0 ^(π/2)   ((sinx)/(cosx+tsinx))dx  hangement  tan((x/2)) =u give  f^′ (t) = ∫_0 ^1       (((2u)/(1+u^2 ))/(((1−u^2 )/(1+u^2 )) +t ((2u)/(1+u^2 ))))  ((2du)/(1+u^2 )) = ∫_0 ^1     ((4u du)/((1+u^2 ){1−u^2 +2tu}))  = −∫_0 ^1     ((4udu)/((1+u^2 ){u^2 −2tu−1} ))   let decompose F(u) =   ((4u)/((u^2  +1)(u^2 −2tu −1)))  roots of  u^2  −2tu −1  Δ^′  = t^2  +1 ⇒u_1 = t+(√(1+t^2 ))   and  u_2 =t−(√(1+t^2 ))      and F(u)= ((4u)/((u−u_1 )(u−u_2 )(1+u^2 )))  F(u) = (a/(u−u_1 )) +(b/(u−u_2 )) + ((cu +d)/(u^2  +1))  a =lim_(u→u_1 )   (u−u_1 )F(u) =   ((4u_1 )/((u_1 −u_2 )(1+u_1 ^2 ))) = ((4(t+(√(1+t^2 ))))/(2(√(1+t^2 ))( 1+(t+(√(1+t^2 )))^2 ))  b =lim_(u→u_2 )    (u−u_2 )F(u) =((4u_2 )/((u_2 −u_1 )(1+u_2 ^2 ))) =((4(t−(√(1+t^2 ))))/(−2(√(1+t^2 )){1+(t−(√(1+t^2 )))^2 ))  lim_(u→+∞) u F(u) =0 =a+b +c ⇒c =−a−b ⇒  F(u) = (a/(u−u_1 )) +(b/(u−u_2 )) +(((−a−b)u +d)/(u^2  +1))  F(0) =0 =−(a/u_1 ) −(b/u_2 )  +d  ⇒d = (a/u_1 ) +(b/u_2 )   ....be continued...

1)wehavef(t)=0π2ln(cosx+tsinx)dxf(0)=0π2ln(cosx)dx=π2ln(2)(thisvalueisproved)2)f(t)=0π2t{ln(cosx+tsinx)}dx=0π2sinxcosx+tsinxdxhangementtan(x2)=ugivef(t)=012u1+u21u21+u2+t2u1+u22du1+u2=014udu(1+u2){1u2+2tu}=014udu(1+u2){u22tu1}letdecomposeF(u)=4u(u2+1)(u22tu1)rootsofu22tu1Δ=t2+1u1=t+1+t2andu2=t1+t2andF(u)=4u(uu1)(uu2)(1+u2)F(u)=auu1+buu2+cu+du2+1a=limuu1(uu1)F(u)=4u1(u1u2)(1+u12)=4(t+1+t2)21+t2(1+(t+1+t2)2b=limuu2(uu2)F(u)=4u2(u2u1)(1+u22)=4(t1+t2)21+t2{1+(t1+t2)2limu+uF(u)=0=a+b+cc=abF(u)=auu1+buu2+(ab)u+du2+1F(0)=0=au1bu2+dd=au1+bu2....becontinued...

Terms of Service

Privacy Policy

Contact: info@tinkutara.com