Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 42781 by maxmathsup by imad last updated on 02/Sep/18

calculate lim_(x→(π/4))       ((sin(2x)sin(x−(π/4)))/(sinx −cosx))

calculatelimxπ4sin(2x)sin(xπ4)sinxcosx

Commented by maxmathsup by imad last updated on 04/Oct/18

let A(x)=((sin(2x)sin(x−(π/4)))/(sinx−cosx))  we have A(x)=((sin(2x)sin(x−(π/4)))/((√2)sin(x−(π/4))))  ⇒lim_(x→(π/4))    A(x)=lim_(x→(π/4))    ((sin(2x))/(√2)) =(1/(√2)) .

letA(x)=sin(2x)sin(xπ4)sinxcosxwehaveA(x)=sin(2x)sin(xπ4)2sin(xπ4)limxπ4A(x)=limxπ4sin(2x)2=12.

Answered by tanmay.chaudhury50@gmail.com last updated on 03/Sep/18

lim_(x→(Π/4))    ((sin2x×(1/(√2))(sinx−cosx))/(sinx−cosx))  =(1/(√2))×sin(Π/2)=(1/(√2))            lim_(t→0)   li_(t→0)

limxΠ4sin2x×12(sinxcosx)sinxcosx=12×sinΠ2=12limt0lit0

Terms of Service

Privacy Policy

Contact: info@tinkutara.com