Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 40097 by maxmathsup by imad last updated on 15/Jul/18

let f(x)=ln(√((2+x)/(2−x)))  1)  find D_f     and find the assymptotes to C_f   2) calculate f^′ (x) and give the variation of f  3) give the graph of f  4) give the equation of tangent to C_(f )    at point  E((1/2),f((1/2)))  5) calculate   ∫_0 ^1 f(x)dx .

$${let}\:{f}\left({x}\right)={ln}\sqrt{\frac{\mathrm{2}+{x}}{\mathrm{2}−{x}}} \\ $$$$\left.\mathrm{1}\right)\:\:{find}\:{D}_{{f}} \:\:\:\:{and}\:{find}\:{the}\:{assymptotes}\:{to}\:{C}_{{f}} \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:{f}^{'} \left({x}\right)\:{and}\:{give}\:{the}\:{variation}\:{of}\:{f} \\ $$$$\left.\mathrm{3}\right)\:{give}\:{the}\:{graph}\:{of}\:{f} \\ $$$$\left.\mathrm{4}\right)\:{give}\:{the}\:{equation}\:{of}\:{tangent}\:{to}\:{C}_{{f}\:} \:\:\:{at}\:{point}\:\:{E}\left(\frac{\mathrm{1}}{\mathrm{2}},{f}\left(\frac{\mathrm{1}}{\mathrm{2}}\right)\right) \\ $$$$\left.\mathrm{5}\right)\:{calculate}\:\:\:\int_{\mathrm{0}} ^{\mathrm{1}} {f}\left({x}\right){dx}\:. \\ $$

Commented by math khazana by abdo last updated on 03/Aug/18

1) D_f =]−2,2[  lim_(x→−2^+ )    f(x)=−∞  lim_(x→2^− )   f(x)=+∞  so  x=−2 and x=2 are  assymptotes to C_f   2) we have f(x)=(1/2){ln(2+x)−ln(2−x)}⇒  f^′ (x)= (1/(2(2+x))) +(1/(2(2−x))) =(1/2){(1/(2+x)) +(1/(2−x))}  =(1/2) (4/(4−x^2 )) =(2/(4−x^2 )) > 0 because  −2<x<2 so f  is increasing on]−2,2[  4) equ.of tangent is y=f^′ ((1/2))(x−(1/2))+f((1/2))  f^′ ((1/2))= (2/(4−(1/4))) =((2×4)/(15)) =(8/(15))  f((1/2)) =(1/2)ln(((2+(1/2))/(2−(1/2)))) =(1/2)ln((5/3)) ⇒  y =(8/(15))(x−(1/2)) +(1/2)ln((5/3))  y=(8/(15))x  −(4/(15)) +(1/2)ln((5/3)).

$$\left.\mathrm{1}\left.\right)\:{D}_{{f}} =\right]−\mathrm{2},\mathrm{2}\left[\right. \\ $$$${lim}_{{x}\rightarrow−\mathrm{2}^{+} } \:\:\:{f}\left({x}\right)=−\infty \\ $$$${lim}_{{x}\rightarrow\mathrm{2}^{−} } \:\:{f}\left({x}\right)=+\infty\:\:{so}\:\:{x}=−\mathrm{2}\:{and}\:{x}=\mathrm{2}\:{are} \\ $$$${assymptotes}\:{to}\:{C}_{{f}} \\ $$$$\left.\mathrm{2}\right)\:{we}\:{have}\:{f}\left({x}\right)=\frac{\mathrm{1}}{\mathrm{2}}\left\{{ln}\left(\mathrm{2}+{x}\right)−{ln}\left(\mathrm{2}−{x}\right)\right\}\Rightarrow \\ $$$${f}^{'} \left({x}\right)=\:\frac{\mathrm{1}}{\mathrm{2}\left(\mathrm{2}+{x}\right)}\:+\frac{\mathrm{1}}{\mathrm{2}\left(\mathrm{2}−{x}\right)}\:=\frac{\mathrm{1}}{\mathrm{2}}\left\{\frac{\mathrm{1}}{\mathrm{2}+{x}}\:+\frac{\mathrm{1}}{\mathrm{2}−{x}}\right\} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\:\frac{\mathrm{4}}{\mathrm{4}−{x}^{\mathrm{2}} }\:=\frac{\mathrm{2}}{\mathrm{4}−{x}^{\mathrm{2}} }\:>\:\mathrm{0}\:{because}\:\:−\mathrm{2}<{x}<\mathrm{2}\:{so}\:{f} \\ $$$$\left.{is}\:{increasing}\:{on}\right]−\mathrm{2},\mathrm{2}\left[\right. \\ $$$$\left.\mathrm{4}\right)\:{equ}.{of}\:{tangent}\:{is}\:{y}={f}^{'} \left(\frac{\mathrm{1}}{\mathrm{2}}\right)\left({x}−\frac{\mathrm{1}}{\mathrm{2}}\right)+{f}\left(\frac{\mathrm{1}}{\mathrm{2}}\right) \\ $$$${f}^{'} \left(\frac{\mathrm{1}}{\mathrm{2}}\right)=\:\frac{\mathrm{2}}{\mathrm{4}−\frac{\mathrm{1}}{\mathrm{4}}}\:=\frac{\mathrm{2}×\mathrm{4}}{\mathrm{15}}\:=\frac{\mathrm{8}}{\mathrm{15}} \\ $$$${f}\left(\frac{\mathrm{1}}{\mathrm{2}}\right)\:=\frac{\mathrm{1}}{\mathrm{2}}{ln}\left(\frac{\mathrm{2}+\frac{\mathrm{1}}{\mathrm{2}}}{\mathrm{2}−\frac{\mathrm{1}}{\mathrm{2}}}\right)\:=\frac{\mathrm{1}}{\mathrm{2}}{ln}\left(\frac{\mathrm{5}}{\mathrm{3}}\right)\:\Rightarrow \\ $$$${y}\:=\frac{\mathrm{8}}{\mathrm{15}}\left({x}−\frac{\mathrm{1}}{\mathrm{2}}\right)\:+\frac{\mathrm{1}}{\mathrm{2}}{ln}\left(\frac{\mathrm{5}}{\mathrm{3}}\right) \\ $$$${y}=\frac{\mathrm{8}}{\mathrm{15}}{x}\:\:−\frac{\mathrm{4}}{\mathrm{15}}\:+\frac{\mathrm{1}}{\mathrm{2}}{ln}\left(\frac{\mathrm{5}}{\mathrm{3}}\right). \\ $$

Commented by math khazana by abdo last updated on 03/Aug/18

5) let I = ∫_0 ^1 ln((√((2+x)/(2−x))))dx  I = (1/2)∫_0 ^1 ln(2+x)dx −(1/2) ∫_0 ^1 ln(2−x)dx but  ∫_0 ^1 ln(2+x)dx =_(2+x=t)   ∫_2 ^3 ln(t)dt=[tln(t)−t]_2 ^3   =3ln(3)−3−2ln(2)+2 =3ln(3)−2ln(2)−1  ∫_0 ^1 ln(2−x)dx =_(2−x=t)   −∫_2 ^1 ln(t)dt  =∫_1 ^2 ln(t)dt =[tln(t)−t]_1 ^2 =2ln(2)−2 +1  =2ln(2)−1 ⇒  ∫_0 ^1 f(x)dx=(3/2)ln(3)−ln(2)−(1/2) −ln(2) +(1/2)  =(3/2)ln(3)−2ln(2).

$$\left.\mathrm{5}\right)\:{let}\:{I}\:=\:\int_{\mathrm{0}} ^{\mathrm{1}} {ln}\left(\sqrt{\frac{\mathrm{2}+{x}}{\mathrm{2}−{x}}}\right){dx} \\ $$$${I}\:=\:\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\mathrm{1}} {ln}\left(\mathrm{2}+{x}\right){dx}\:−\frac{\mathrm{1}}{\mathrm{2}}\:\int_{\mathrm{0}} ^{\mathrm{1}} {ln}\left(\mathrm{2}−{x}\right){dx}\:{but} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} {ln}\left(\mathrm{2}+{x}\right){dx}\:=_{\mathrm{2}+{x}={t}} \:\:\int_{\mathrm{2}} ^{\mathrm{3}} {ln}\left({t}\right){dt}=\left[{tln}\left({t}\right)−{t}\right]_{\mathrm{2}} ^{\mathrm{3}} \\ $$$$=\mathrm{3}{ln}\left(\mathrm{3}\right)−\mathrm{3}−\mathrm{2}{ln}\left(\mathrm{2}\right)+\mathrm{2}\:=\mathrm{3}{ln}\left(\mathrm{3}\right)−\mathrm{2}{ln}\left(\mathrm{2}\right)−\mathrm{1} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} {ln}\left(\mathrm{2}−{x}\right){dx}\:=_{\mathrm{2}−{x}={t}} \:\:−\int_{\mathrm{2}} ^{\mathrm{1}} {ln}\left({t}\right){dt} \\ $$$$=\int_{\mathrm{1}} ^{\mathrm{2}} {ln}\left({t}\right){dt}\:=\left[{tln}\left({t}\right)−{t}\right]_{\mathrm{1}} ^{\mathrm{2}} =\mathrm{2}{ln}\left(\mathrm{2}\right)−\mathrm{2}\:+\mathrm{1} \\ $$$$=\mathrm{2}{ln}\left(\mathrm{2}\right)−\mathrm{1}\:\Rightarrow \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} {f}\left({x}\right){dx}=\frac{\mathrm{3}}{\mathrm{2}}{ln}\left(\mathrm{3}\right)−{ln}\left(\mathrm{2}\right)−\frac{\mathrm{1}}{\mathrm{2}}\:−{ln}\left(\mathrm{2}\right)\:+\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$=\frac{\mathrm{3}}{\mathrm{2}}{ln}\left(\mathrm{3}\right)−\mathrm{2}{ln}\left(\mathrm{2}\right). \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com