Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 40102 by maxmathsup by imad last updated on 15/Jul/18

let f(x) = ((∣x∣)/((1+∣1−x^2 ∣)^n ))  study tbe derivability of f at points 0 and 1 (n natural integr)

$${let}\:{f}\left({x}\right)\:=\:\frac{\mid{x}\mid}{\left(\mathrm{1}+\mid\mathrm{1}−{x}^{\mathrm{2}} \mid\right)^{{n}} } \\ $$$${study}\:{tbe}\:{derivability}\:{of}\:{f}\:{at}\:{points}\:\mathrm{0}\:{and}\:\mathrm{1}\:\left({n}\:{natural}\:{integr}\right) \\ $$

Answered by math khazana by abdo last updated on 26/Jul/18

1) derivability at 0  lim_(h→0^+ )    ((f(0+h) −f(0))/h) =lim_(h→0^+ )    (h/((1+(1−h^2 )^n ))  =lim_(h→0^+ )        (h/(h(2+h^2 )^n )) =lim_(h→0^+ )    (1/((2+h^2 )^n )) =(1/2^n )  lim_(h→0^− )   ((f(0+h) −f(0))/h) =lim_(h→0^− )    ((−1)/((2+h^2 )^n )) =((−1)/2^n )  we conclude that f is derivable at left and  right at but not derivable at this point.

$$\left.\mathrm{1}\right)\:{derivability}\:{at}\:\mathrm{0} \\ $$$${lim}_{{h}\rightarrow\mathrm{0}^{+} } \:\:\:\frac{{f}\left(\mathrm{0}+{h}\right)\:−{f}\left(\mathrm{0}\right)}{{h}}\:={lim}_{{h}\rightarrow\mathrm{0}^{+} } \:\:\:\frac{{h}}{\left(\mathrm{1}+\left(\mathrm{1}−{h}^{\mathrm{2}} \right)^{{n}} \right.} \\ $$$$={lim}_{{h}\rightarrow\mathrm{0}^{+} } \:\:\:\:\:\:\:\frac{{h}}{{h}\left(\mathrm{2}+{h}^{\mathrm{2}} \right)^{{n}} }\:={lim}_{{h}\rightarrow\mathrm{0}^{+} } \:\:\:\frac{\mathrm{1}}{\left(\mathrm{2}+{h}^{\mathrm{2}} \right)^{{n}} }\:=\frac{\mathrm{1}}{\mathrm{2}^{{n}} } \\ $$$${lim}_{{h}\rightarrow\mathrm{0}^{−} } \:\:\frac{{f}\left(\mathrm{0}+{h}\right)\:−{f}\left(\mathrm{0}\right)}{{h}}\:={lim}_{{h}\rightarrow\mathrm{0}^{−} } \:\:\:\frac{−\mathrm{1}}{\left(\mathrm{2}+{h}^{\mathrm{2}} \right)^{{n}} }\:=\frac{−\mathrm{1}}{\mathrm{2}^{{n}} } \\ $$$${we}\:{conclude}\:{that}\:{f}\:{is}\:{derivable}\:{at}\:{left}\:{and} \\ $$$${right}\:{at}\:{but}\:{not}\:{derivable}\:{at}\:{this}\:{point}. \\ $$$$ \\ $$$$\: \\ $$

Answered by math khazana by abdo last updated on 28/Jul/18

2) derivability at 1  lim_(h→0^+ )  ((f(1+h) −f(1))/h)  =lim_(h→0^+ )   ((∣1+h∣)/((1+∣1−(1+h)^2 ∣)^n )) −1  =lim_(h→0^+ )     ((1+h)/((1+((1+h)^2 −1))^n )) −1  =lim_(h→0^+ )     ((1+h)/((1+h^2  +2h)^n )) −1  =lim_(h→0^− )    ((1+h−(h+1)^(2n) )/((h+1)^(2n) )) =0  f is derivable at  right of 1  lim_(h→0^− )    ((f(1+h)−f(1))/h)=lim_(h→0^− )    ((1+h)/({1+∣1−(1+h)^2 }^n )) −1  =lim_(h→0^− )      ((1+h)/({1+(1−(1+h)^2 }^n )) −1  =lim_(h→0^− )     ((1+h)/({1+(1−h^2 −2h−1)}^n )) −1  =lim_(h→0^− )     ((1+h)/({1−h^2 −2h)^n ))−1 =0  f is derivable at left of 1  we have  f_g ^′ (1)=f_d ^′ (1) ⇒ f is derivable at x_0 =1

$$\left.\mathrm{2}\right)\:{derivability}\:{at}\:\mathrm{1} \\ $$$${lim}_{{h}\rightarrow\mathrm{0}^{+} } \:\frac{{f}\left(\mathrm{1}+{h}\right)\:−{f}\left(\mathrm{1}\right)}{{h}} \\ $$$$={lim}_{{h}\rightarrow\mathrm{0}^{+} } \:\:\frac{\mid\mathrm{1}+{h}\mid}{\left(\mathrm{1}+\mid\mathrm{1}−\left(\mathrm{1}+{h}\right)^{\mathrm{2}} \mid\right)^{{n}} }\:−\mathrm{1} \\ $$$$={lim}_{{h}\rightarrow\mathrm{0}^{+} } \:\:\:\:\frac{\mathrm{1}+{h}}{\left(\mathrm{1}+\left(\left(\mathrm{1}+{h}\right)^{\mathrm{2}} −\mathrm{1}\right)\right)^{{n}} }\:−\mathrm{1} \\ $$$$={lim}_{{h}\rightarrow\mathrm{0}^{+} } \:\:\:\:\frac{\mathrm{1}+{h}}{\left(\mathrm{1}+{h}^{\mathrm{2}} \:+\mathrm{2}{h}\right)^{{n}} }\:−\mathrm{1} \\ $$$$={lim}_{{h}\rightarrow\mathrm{0}^{−} } \:\:\:\frac{\mathrm{1}+{h}−\left({h}+\mathrm{1}\right)^{\mathrm{2}{n}} }{\left({h}+\mathrm{1}\right)^{\mathrm{2}{n}} }\:=\mathrm{0}\:\:{f}\:{is}\:{derivable}\:{at} \\ $$$${right}\:{of}\:\mathrm{1} \\ $$$${lim}_{{h}\rightarrow\mathrm{0}^{−} } \:\:\:\frac{{f}\left(\mathrm{1}+{h}\right)−{f}\left(\mathrm{1}\right)}{{h}}={lim}_{{h}\rightarrow\mathrm{0}^{−} } \:\:\:\frac{\mathrm{1}+{h}}{\left\{\mathrm{1}+\mid\mathrm{1}−\left(\mathrm{1}+{h}\right)^{\mathrm{2}} \right\}^{{n}} }\:−\mathrm{1} \\ $$$$={lim}_{{h}\rightarrow\mathrm{0}^{−} } \:\:\:\:\:\frac{\mathrm{1}+{h}}{\left\{\mathrm{1}+\left(\mathrm{1}−\left(\mathrm{1}+{h}\right)^{\mathrm{2}} \right\}^{{n}} \right.}\:−\mathrm{1} \\ $$$$={lim}_{{h}\rightarrow\mathrm{0}^{−} } \:\:\:\:\frac{\mathrm{1}+{h}}{\left\{\mathrm{1}+\left(\mathrm{1}−{h}^{\mathrm{2}} −\mathrm{2}{h}−\mathrm{1}\right)\right\}^{{n}} }\:−\mathrm{1} \\ $$$$={lim}_{{h}\rightarrow\mathrm{0}^{−} } \:\:\:\:\frac{\mathrm{1}+{h}}{\left\{\mathrm{1}−{h}^{\mathrm{2}} −\mathrm{2}{h}\right)^{{n}} }−\mathrm{1}\:=\mathrm{0} \\ $$$${f}\:{is}\:{derivable}\:{at}\:{left}\:{of}\:\mathrm{1}\:\:{we}\:{have} \\ $$$${f}_{{g}} ^{'} \left(\mathrm{1}\right)={f}_{{d}} ^{'} \left(\mathrm{1}\right)\:\Rightarrow\:{f}\:{is}\:{derivable}\:{at}\:{x}_{\mathrm{0}} =\mathrm{1} \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com