Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 40106 by maxmathsup by imad last updated on 15/Jul/18

study and give the graph for the function  f(x)= (x/(x−1)) e^(1/x)

$${study}\:{and}\:{give}\:{the}\:{graph}\:{for}\:{the}\:{function} \\ $$$${f}\left({x}\right)=\:\frac{{x}}{{x}−\mathrm{1}}\:{e}^{\frac{\mathrm{1}}{{x}}} \\ $$

Answered by math khazana by abdo last updated on 28/Jul/18

D_f =R−{0,1} =]−∞,0[∪]0,1[∪]1,+∞[    lim_(x→−∞) f(x)=lim_(x→−∞) (x/(x−1))e^(1/x)  =1  y=1 is assymtote at −∞  lim_(x→+∞)  f(x)=lim_(x→+∞)  (x/(x−1)) e^(1/x)  =1 so  y=1 is assymptote at+∞  lim_(x→1^− )   f(x)  =−∞  and lim_(x→1^+ )   f(x)= +∞  lim_(x→0^+ )    f(x)=lim_(x→0^+ )    (x/(x−1)) e^(1/x)  chang=(1/x)=t  =lim_(t→+∞)      (1/(t((1/t)−1))) e^t =lim_(t→+∞)  (1/(1−t)) e^t     =lim_(t→+∞)    (e^t /t) (1/((1/t)−1)) =−∞  lim_(x→0^− )    f(x) =lim_(x→0^− )    (x/(x−1)) e^(1/x) (ch.(1/x)=t)  =lim_(t→−∞)     (1/(t((1/t)−1))) e^t  =lim_(t→−∞) −(e^t /t)=0  we have f^′ (x)=((x/(x−1)))^′ e^(1/x)  +((x/(x−1)))(e^(1/x) )^′   =    −(1/((x−1)^2 )) e^(1/x)  −(1/x^2 )((x/(x−1)))e^(1/x)   =−(1/((x−1)^2 )) e^(1/x)  − (1/(x(x−1))) e^(1/x)   =−(1/((x−1))) e^(1/x) { (1/x) +1} =−((x+1)/x)(1/((x−1)))e^(1/x)   =−((x+1)/(x(x−1))) e^(1/x)    ....be continued...

$$\left.{D}_{{f}} ={R}−\left\{\mathrm{0},\mathrm{1}\right\}\:=\right]−\infty,\mathrm{0}\left[\cup\right]\mathrm{0},\mathrm{1}\left[\cup\right]\mathrm{1},+\infty\left[\right. \\ $$$$ \\ $$$${lim}_{{x}\rightarrow−\infty} {f}\left({x}\right)={lim}_{{x}\rightarrow−\infty} \frac{{x}}{{x}−\mathrm{1}}{e}^{\frac{\mathrm{1}}{{x}}} \:=\mathrm{1} \\ $$$${y}=\mathrm{1}\:{is}\:{assymtote}\:{at}\:−\infty \\ $$$${lim}_{{x}\rightarrow+\infty} \:{f}\left({x}\right)={lim}_{{x}\rightarrow+\infty} \:\frac{{x}}{{x}−\mathrm{1}}\:{e}^{\frac{\mathrm{1}}{{x}}} \:=\mathrm{1}\:{so} \\ $$$${y}=\mathrm{1}\:{is}\:{assymptote}\:{at}+\infty \\ $$$${lim}_{{x}\rightarrow\mathrm{1}^{−} } \:\:{f}\left({x}\right)\:\:=−\infty\:\:{and}\:{lim}_{{x}\rightarrow\mathrm{1}^{+} } \:\:{f}\left({x}\right)=\:+\infty \\ $$$${lim}_{{x}\rightarrow\mathrm{0}^{+} } \:\:\:{f}\left({x}\right)={lim}_{{x}\rightarrow\mathrm{0}^{+} } \:\:\:\frac{{x}}{{x}−\mathrm{1}}\:{e}^{\frac{\mathrm{1}}{{x}}} \:{chang}=\frac{\mathrm{1}}{{x}}={t} \\ $$$$={lim}_{{t}\rightarrow+\infty} \:\:\:\:\:\frac{\mathrm{1}}{{t}\left(\frac{\mathrm{1}}{{t}}−\mathrm{1}\right)}\:{e}^{{t}} ={lim}_{{t}\rightarrow+\infty} \:\frac{\mathrm{1}}{\mathrm{1}−{t}}\:{e}^{{t}} \:\: \\ $$$$={lim}_{{t}\rightarrow+\infty} \:\:\:\frac{{e}^{{t}} }{{t}}\:\frac{\mathrm{1}}{\frac{\mathrm{1}}{{t}}−\mathrm{1}}\:=−\infty \\ $$$${lim}_{{x}\rightarrow\mathrm{0}^{−} } \:\:\:{f}\left({x}\right)\:={lim}_{{x}\rightarrow\mathrm{0}^{−} } \:\:\:\frac{{x}}{{x}−\mathrm{1}}\:{e}^{\frac{\mathrm{1}}{{x}}} \left({ch}.\frac{\mathrm{1}}{{x}}={t}\right) \\ $$$$={lim}_{{t}\rightarrow−\infty} \:\:\:\:\frac{\mathrm{1}}{{t}\left(\frac{\mathrm{1}}{{t}}−\mathrm{1}\right)}\:{e}^{{t}} \:={lim}_{{t}\rightarrow−\infty} −\frac{{e}^{{t}} }{{t}}=\mathrm{0} \\ $$$${we}\:{have}\:{f}^{'} \left({x}\right)=\left(\frac{{x}}{{x}−\mathrm{1}}\right)^{'} {e}^{\frac{\mathrm{1}}{{x}}} \:+\left(\frac{{x}}{{x}−\mathrm{1}}\right)\left({e}^{\frac{\mathrm{1}}{{x}}} \right)^{'} \\ $$$$=\:\:\:\:−\frac{\mathrm{1}}{\left({x}−\mathrm{1}\right)^{\mathrm{2}} }\:{e}^{\frac{\mathrm{1}}{{x}}} \:−\frac{\mathrm{1}}{{x}^{\mathrm{2}} }\left(\frac{{x}}{{x}−\mathrm{1}}\right){e}^{\frac{\mathrm{1}}{{x}}} \\ $$$$=−\frac{\mathrm{1}}{\left({x}−\mathrm{1}\right)^{\mathrm{2}} }\:{e}^{\frac{\mathrm{1}}{{x}}} \:−\:\frac{\mathrm{1}}{{x}\left({x}−\mathrm{1}\right)}\:{e}^{\frac{\mathrm{1}}{{x}}} \\ $$$$=−\frac{\mathrm{1}}{\left({x}−\mathrm{1}\right)}\:{e}^{\frac{\mathrm{1}}{{x}}} \left\{\:\frac{\mathrm{1}}{{x}}\:+\mathrm{1}\right\}\:=−\frac{{x}+\mathrm{1}}{{x}}\frac{\mathrm{1}}{\left({x}−\mathrm{1}\right)}{e}^{\frac{\mathrm{1}}{{x}}} \\ $$$$=−\frac{{x}+\mathrm{1}}{{x}\left({x}−\mathrm{1}\right)}\:{e}^{\frac{\mathrm{1}}{{x}}} \:\:\:....{be}\:{continued}... \\ $$$$\:\:\:\: \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com