Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 40127 by maxmathsup by imad last updated on 16/Jul/18

find the value of ∫_0 ^1    ((e^x −1)/(e^x  +1))dx

$${find}\:{the}\:{value}\:{of}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\frac{{e}^{{x}} −\mathrm{1}}{{e}^{{x}} \:+\mathrm{1}}{dx} \\ $$

Commented by math khazana by abdo last updated on 18/Jul/18

let I = ∫_0 ^1   ((e^x −1)/(e^x  +1))dx  I = ∫_0 ^1   (e^x /(e^x  +1))dx −∫_0 ^1    (dx/(e^x  +1)) but  ∫_0 ^1   (e^x /(e^x  +1))dx =[ln(e^x  +1)]_0 ^1  =ln(1+e)−ln(2)  changement e^x =t give  ∫_0 ^1    (dx/(e^x  +1))dx = ∫_1 ^e      (1/(t+1)) (dt/t) =∫_1 ^e ((1/t) −(1/(t+1)))dt  =[ln∣ (t/(t+1))∣]_1 ^e = ln((e/(e+1))) +ln(2) ⇒  I =ln(1+e)−ln(2) −ln((e/(e+1)))−ln(2)  =2ln(e+1) −2ln(2) −1 .

$${let}\:{I}\:=\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{e}^{{x}} −\mathrm{1}}{{e}^{{x}} \:+\mathrm{1}}{dx} \\ $$$${I}\:=\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{e}^{{x}} }{{e}^{{x}} \:+\mathrm{1}}{dx}\:−\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\frac{{dx}}{{e}^{{x}} \:+\mathrm{1}}\:{but} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{e}^{{x}} }{{e}^{{x}} \:+\mathrm{1}}{dx}\:=\left[{ln}\left({e}^{{x}} \:+\mathrm{1}\right)\right]_{\mathrm{0}} ^{\mathrm{1}} \:={ln}\left(\mathrm{1}+{e}\right)−{ln}\left(\mathrm{2}\right) \\ $$$${changement}\:{e}^{{x}} ={t}\:{give} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\frac{{dx}}{{e}^{{x}} \:+\mathrm{1}}{dx}\:=\:\int_{\mathrm{1}} ^{{e}} \:\:\:\:\:\frac{\mathrm{1}}{{t}+\mathrm{1}}\:\frac{{dt}}{{t}}\:=\int_{\mathrm{1}} ^{{e}} \left(\frac{\mathrm{1}}{{t}}\:−\frac{\mathrm{1}}{{t}+\mathrm{1}}\right){dt} \\ $$$$=\left[{ln}\mid\:\frac{{t}}{{t}+\mathrm{1}}\mid\right]_{\mathrm{1}} ^{{e}} =\:{ln}\left(\frac{{e}}{{e}+\mathrm{1}}\right)\:+{ln}\left(\mathrm{2}\right)\:\Rightarrow \\ $$$${I}\:={ln}\left(\mathrm{1}+{e}\right)−{ln}\left(\mathrm{2}\right)\:−{ln}\left(\frac{{e}}{{e}+\mathrm{1}}\right)−{ln}\left(\mathrm{2}\right) \\ $$$$=\mathrm{2}{ln}\left({e}+\mathrm{1}\right)\:−\mathrm{2}{ln}\left(\mathrm{2}\right)\:−\mathrm{1}\:. \\ $$

Answered by tanmay.chaudhury50@gmail.com last updated on 17/Jul/18

∫_0 ^1 ((e^x −1)/(e^x +1))dx  t=e^x +1  dt=e^x dx  (dt/(t−1))=dx  ∫_2 ^(e+1)  ((t−2)/t).(dt/(t−1))  ∫_2 ^(e+1)   ((2(t−1)−t)/(t(t−1)))dt  ∫_2 ^(e+1)  ((2dt)/t)−∫_2 ^(e+1)  (dt/(t−1))    2lnt−ln(t−1)∣_2 ^(e+1)   =∣ln(t^2 /(t−1))∣_2 ^(e+1)   =ln(((e+1)^2 )/(e+1−1)) −ln(2^2 /(2−1))  =2ln(e+1)−lne−2ln2    =

$$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{e}^{{x}} −\mathrm{1}}{{e}^{{x}} +\mathrm{1}}{dx} \\ $$$${t}={e}^{{x}} +\mathrm{1}\:\:{dt}={e}^{{x}} {dx} \\ $$$$\frac{{dt}}{{t}−\mathrm{1}}={dx} \\ $$$$\int_{\mathrm{2}} ^{{e}+\mathrm{1}} \:\frac{{t}−\mathrm{2}}{{t}}.\frac{{dt}}{{t}−\mathrm{1}} \\ $$$$\int_{\mathrm{2}} ^{{e}+\mathrm{1}} \:\:\frac{\mathrm{2}\left({t}−\mathrm{1}\right)−{t}}{{t}\left({t}−\mathrm{1}\right)}{dt} \\ $$$$\int_{\mathrm{2}} ^{{e}+\mathrm{1}} \:\frac{\mathrm{2}{dt}}{{t}}−\int_{\mathrm{2}} ^{{e}+\mathrm{1}} \:\frac{{dt}}{{t}−\mathrm{1}} \\ $$$$\:\:\mathrm{2}{lnt}−{ln}\left({t}−\mathrm{1}\right)\mid_{\mathrm{2}} ^{{e}+\mathrm{1}} \\ $$$$=\mid{ln}\frac{{t}^{\mathrm{2}} }{{t}−\mathrm{1}}\mid_{\mathrm{2}} ^{{e}+\mathrm{1}} \\ $$$$={ln}\frac{\left({e}+\mathrm{1}\right)^{\mathrm{2}} }{{e}+\mathrm{1}−\mathrm{1}}\:−{ln}\frac{\mathrm{2}^{\mathrm{2}} }{\mathrm{2}−\mathrm{1}} \\ $$$$=\mathrm{2}{ln}\left({e}+\mathrm{1}\right)−{lne}−\mathrm{2}{ln}\mathrm{2} \\ $$$$ \\ $$$$= \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com