All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 40127 by maxmathsup by imad last updated on 16/Jul/18
findthevalueof∫01ex−1ex+1dx
Commented by math khazana by abdo last updated on 18/Jul/18
letI=∫01ex−1ex+1dxI=∫01exex+1dx−∫01dxex+1but∫01exex+1dx=[ln(ex+1)]01=ln(1+e)−ln(2)changementex=tgive∫01dxex+1dx=∫1e1t+1dtt=∫1e(1t−1t+1)dt=[ln∣tt+1∣]1e=ln(ee+1)+ln(2)⇒I=ln(1+e)−ln(2)−ln(ee+1)−ln(2)=2ln(e+1)−2ln(2)−1.
Answered by tanmay.chaudhury50@gmail.com last updated on 17/Jul/18
∫01ex−1ex+1dxt=ex+1dt=exdxdtt−1=dx∫2e+1t−2t.dtt−1∫2e+12(t−1)−tt(t−1)dt∫2e+12dtt−∫2e+1dtt−12lnt−ln(t−1)∣2e+1=∣lnt2t−1∣2e+1=ln(e+1)2e+1−1−ln222−1=2ln(e+1)−lne−2ln2=
Terms of Service
Privacy Policy
Contact: info@tinkutara.com