Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 4013 by Yozzii last updated on 26/Dec/15

Find x such that (x^2 +5x+5)^(x^2 −21x+10) =1.

$${Find}\:{x}\:{such}\:{that}\:\left({x}^{\mathrm{2}} +\mathrm{5}{x}+\mathrm{5}\right)^{{x}^{\mathrm{2}} −\mathrm{21}{x}+\mathrm{10}} =\mathrm{1}. \\ $$

Commented by 123456 last updated on 26/Dec/15

x^2 +5x+5=1⇔x^2 +5x+4=0  Δ=5^2 −4(1)(4)  Δ=25−16  Δ=9  x=((−5±(√9))/(2(1)))=((−5±3)/2)  x_1 =((−5+3)/2)=−1  x_2 =((−5−3)/2)=−4  x^2 −21x+10=0  Δ=(−21)^2 −4(1)(10)  Δ=441−40  Δ=401  x=((21±(√(401)))/2)

$${x}^{\mathrm{2}} +\mathrm{5}{x}+\mathrm{5}=\mathrm{1}\Leftrightarrow{x}^{\mathrm{2}} +\mathrm{5}{x}+\mathrm{4}=\mathrm{0} \\ $$$$\Delta=\mathrm{5}^{\mathrm{2}} −\mathrm{4}\left(\mathrm{1}\right)\left(\mathrm{4}\right) \\ $$$$\Delta=\mathrm{25}−\mathrm{16} \\ $$$$\Delta=\mathrm{9} \\ $$$${x}=\frac{−\mathrm{5}\pm\sqrt{\mathrm{9}}}{\mathrm{2}\left(\mathrm{1}\right)}=\frac{−\mathrm{5}\pm\mathrm{3}}{\mathrm{2}} \\ $$$${x}_{\mathrm{1}} =\frac{−\mathrm{5}+\mathrm{3}}{\mathrm{2}}=−\mathrm{1} \\ $$$${x}_{\mathrm{2}} =\frac{−\mathrm{5}−\mathrm{3}}{\mathrm{2}}=−\mathrm{4} \\ $$$${x}^{\mathrm{2}} −\mathrm{21}{x}+\mathrm{10}=\mathrm{0} \\ $$$$\Delta=\left(−\mathrm{21}\right)^{\mathrm{2}} −\mathrm{4}\left(\mathrm{1}\right)\left(\mathrm{10}\right) \\ $$$$\Delta=\mathrm{441}−\mathrm{40} \\ $$$$\Delta=\mathrm{401} \\ $$$${x}=\frac{\mathrm{21}\pm\sqrt{\mathrm{401}}}{\mathrm{2}} \\ $$

Answered by RasheedSindhi last updated on 26/Dec/15

For A^B =1  Case(i)B=0 for every A  Or  Case(ii)B=1 for A=1  So  C−(i) x^2 −21x+10=0  C−(ii) x^2 −21x+10=1 ∧x^2 +5x+5=1  C−(iii) x^2 +5x+5=0                   Case(i)  x^2 −21x+10=0    x=((21±(√((−21)^2 −4(1)(10))))/(2(1)))  x=((21±(√(401)))/2)  −−−−−−−−                        Case(ii)  x^2 −21x+10=1 ∧x^2 +5x+5=1    x^2 −21x+9=0 ∧x^2 +5x+4=0                                   x=−1 ∣ x=−4  Both eqns have no common solution.  x=((21±(√(401)))/2)

$${For}\:{A}^{{B}} =\mathrm{1} \\ $$$${Case}\left({i}\right){B}=\mathrm{0}\:{for}\:{every}\:{A} \\ $$$${Or} \\ $$$${Case}\left({ii}\right){B}=\mathrm{1}\:{for}\:{A}=\mathrm{1} \\ $$$${So} \\ $$$${C}−\left({i}\right)\:{x}^{\mathrm{2}} −\mathrm{21}{x}+\mathrm{10}=\mathrm{0} \\ $$$${C}−\left({ii}\right)\:{x}^{\mathrm{2}} −\mathrm{21}{x}+\mathrm{10}=\mathrm{1}\:\wedge{x}^{\mathrm{2}} +\mathrm{5}{x}+\mathrm{5}=\mathrm{1} \\ $$$${C}−\left({iii}\right)\:{x}^{\mathrm{2}} +\mathrm{5}{x}+\mathrm{5}=\mathrm{0}\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{Case}\left({i}\right) \\ $$$${x}^{\mathrm{2}} −\mathrm{21}{x}+\mathrm{10}=\mathrm{0} \\ $$$$\:\:{x}=\frac{\mathrm{21}\pm\sqrt{\left(−\mathrm{21}\right)^{\mathrm{2}} −\mathrm{4}\left(\mathrm{1}\right)\left(\mathrm{10}\right)}}{\mathrm{2}\left(\mathrm{1}\right)} \\ $$$${x}=\frac{\mathrm{21}\pm\sqrt{\mathrm{401}}}{\mathrm{2}} \\ $$$$−−−−−−−− \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{Case}\left({ii}\right) \\ $$$${x}^{\mathrm{2}} −\mathrm{21}{x}+\mathrm{10}=\mathrm{1}\:\wedge{x}^{\mathrm{2}} +\mathrm{5}{x}+\mathrm{5}=\mathrm{1} \\ $$$$ \\ $$$${x}^{\mathrm{2}} −\mathrm{21}{x}+\mathrm{9}=\mathrm{0}\:\wedge{x}^{\mathrm{2}} +\mathrm{5}{x}+\mathrm{4}=\mathrm{0} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{x}=−\mathrm{1}\:\mid\:{x}=−\mathrm{4} \\ $$$${Both}\:{eqns}\:{have}\:{no}\:{common}\:{solution}. \\ $$$${x}=\frac{\mathrm{21}\pm\sqrt{\mathrm{401}}}{\mathrm{2}} \\ $$

Commented by Yozzii last updated on 26/Dec/15

True. And my question hadn′t specified  real x only. Good!

$${True}.\:{And}\:{my}\:{question}\:{hadn}'{t}\:{specified} \\ $$$${real}\:{x}\:{only}.\:{Good}! \\ $$

Commented by Rasheed Soomro last updated on 26/Dec/15

If we consider complex numbers  many cases can be considered   (however it is not necessary that  given equations support all these  cases.)  For A=ω (Cuberoot of unity) B  may be 3k type number.  A=i B may be doubly even numbers  ETC.

$${If}\:{we}\:{consider}\:{complex}\:{numbers} \\ $$$${many}\:{cases}\:{can}\:{be}\:{considered}\: \\ $$$$\left({however}\:{it}\:{is}\:{not}\:{necessary}\:{that}\right. \\ $$$${given}\:{equations}\:{support}\:{all}\:{these} \\ $$$$\left.{cases}.\right) \\ $$$${For}\:{A}=\omega\:\left({Cuberoot}\:{of}\:{unity}\right)\:{B} \\ $$$${may}\:{be}\:\mathrm{3}{k}\:{type}\:{number}. \\ $$$${A}={i}\:{B}\:{may}\:{be}\:{doubly}\:{even}\:{numbers} \\ $$$${ETC}. \\ $$

Commented by Yozzii last updated on 26/Dec/15

If A=0 and B∈R−{0}, ⇒0^B =0≠1.  The third case isn′t required.  If you′d like, consider A=−1   and B even. ⇒A^B =(−1)^(2w) =1

$${If}\:{A}=\mathrm{0}\:{and}\:{B}\in\mathbb{R}−\left\{\mathrm{0}\right\},\:\Rightarrow\mathrm{0}^{{B}} =\mathrm{0}\neq\mathrm{1}. \\ $$$${The}\:{third}\:{case}\:{isn}'{t}\:{required}. \\ $$$${If}\:{you}'{d}\:{like},\:{consider}\:{A}=−\mathrm{1}\: \\ $$$${and}\:{B}\:{even}.\:\Rightarrow{A}^{{B}} =\left(−\mathrm{1}\right)^{\mathrm{2}{w}} =\mathrm{1} \\ $$$$ \\ $$

Commented by Yozzii last updated on 26/Dec/15

x^2 +5x+5=−1  x^2 +5x+6=0  x=((−5±(√(25−4×1×6)))/2)=((−5±1)/2)  x=−3,−2   x^2 −10x+21 is even if x is odd.  Then x^2 −10x+21=9+30+21=60  for x=−3⇒(−1)^(60) =1.  x=−3 is a solution.

$${x}^{\mathrm{2}} +\mathrm{5}{x}+\mathrm{5}=−\mathrm{1} \\ $$$${x}^{\mathrm{2}} +\mathrm{5}{x}+\mathrm{6}=\mathrm{0} \\ $$$${x}=\frac{−\mathrm{5}\pm\sqrt{\mathrm{25}−\mathrm{4}×\mathrm{1}×\mathrm{6}}}{\mathrm{2}}=\frac{−\mathrm{5}\pm\mathrm{1}}{\mathrm{2}} \\ $$$${x}=−\mathrm{3},−\mathrm{2}\: \\ $$$${x}^{\mathrm{2}} −\mathrm{10}{x}+\mathrm{21}\:{is}\:{even}\:{if}\:{x}\:{is}\:{odd}. \\ $$$${Then}\:{x}^{\mathrm{2}} −\mathrm{10}{x}+\mathrm{21}=\mathrm{9}+\mathrm{30}+\mathrm{21}=\mathrm{60} \\ $$$${for}\:{x}=−\mathrm{3}\Rightarrow\left(−\mathrm{1}\right)^{\mathrm{60}} =\mathrm{1}. \\ $$$${x}=−\mathrm{3}\:{is}\:{a}\:{solution}. \\ $$

Commented by Yozzii last updated on 26/Dec/15

The case by case approach is ideal  and systematic!  We just need to ensure all cases are  considered...

$${The}\:{case}\:{by}\:{case}\:{approach}\:{is}\:{ideal} \\ $$$${and}\:{systematic}! \\ $$$${We}\:{just}\:{need}\:{to}\:{ensure}\:{all}\:{cases}\:{are} \\ $$$${considered}... \\ $$

Commented by RasheedSindhi last updated on 26/Dec/15

THankS A LoT!  YourGuidanceIsAlways  Welcomed!  3rd Case is my mistake!  I am going to correctit!  Actually due to hastiness  I have made many mistakes  in this answer.  A=−1 and B ∈ E is a good  suggestion,which was not in  my mind!

$$\boldsymbol{\mathcal{T}}\mathcal{H}{ank}\mathcal{S}\:\mathcal{A}\:\mathcal{L}{o}\boldsymbol{\mathcal{T}}! \\ $$$$\boldsymbol{\mathrm{YourGuidanceIsAlways}} \\ $$$$\boldsymbol{\mathrm{Welcomed}}! \\ $$$$\mathrm{3}{rd}\:{Case}\:{is}\:{my}\:{mistake}! \\ $$$${I}\:{am}\:{going}\:{to}\:{correctit}! \\ $$$${Actually}\:{due}\:{to}\:{hastiness} \\ $$$${I}\:{have}\:{made}\:{many}\:{mistakes} \\ $$$${in}\:{this}\:{answer}. \\ $$$${A}=−\mathrm{1}\:{and}\:{B}\:\in\:\mathbb{E}\:{is}\:{a}\:{good} \\ $$$${suggestion},{which}\:{was}\:{not}\:{in} \\ $$$${my}\:{mind}! \\ $$

Answered by Alejandro Prieto last updated on 26/Dec/15

Si (x^2  + 5x + 5)^(x^2  − 21x + 10)  = 1  (x^2  − 21x + 10)ln(x^2  + 5x + 5) = 0  si ln(x^2  + 5x + 5) = 0 ,      x^2  + 5x + 5 = 1  entonces x^2  + 5x + 4 = (x + 4)(x + 1) = 0  luego x_1  = −1              x_2  = −4  Si x^2  − 21x + 10 = 0  x_3  = ((21 − (√(401)))/2)  x_4  = ((21 + (√(401)))/2)

$$\mathrm{Si}\:\left({x}^{\mathrm{2}} \:+\:\mathrm{5}{x}\:+\:\mathrm{5}\right)^{{x}^{\mathrm{2}} \:−\:\mathrm{21}{x}\:+\:\mathrm{10}} \:=\:\mathrm{1} \\ $$$$\left({x}^{\mathrm{2}} \:−\:\mathrm{21}{x}\:+\:\mathrm{10}\right){ln}\left({x}^{\mathrm{2}} \:+\:\mathrm{5}{x}\:+\:\mathrm{5}\right)\:=\:\mathrm{0} \\ $$$$\mathrm{si}\:{ln}\left({x}^{\mathrm{2}} \:+\:\mathrm{5}{x}\:+\:\mathrm{5}\right)\:=\:\mathrm{0}\:,\:\:\:\:\:\:{x}^{\mathrm{2}} \:+\:\mathrm{5}{x}\:+\:\mathrm{5}\:=\:\mathrm{1} \\ $$$$\mathrm{entonces}\:{x}^{\mathrm{2}} \:+\:\mathrm{5}{x}\:+\:\mathrm{4}\:=\:\left({x}\:+\:\mathrm{4}\right)\left({x}\:+\:\mathrm{1}\right)\:=\:\mathrm{0} \\ $$$$\mathrm{luego}\:{x}_{\mathrm{1}} \:=\:−\mathrm{1} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:{x}_{\mathrm{2}} \:=\:−\mathrm{4} \\ $$$$\mathrm{Si}\:{x}^{\mathrm{2}} \:−\:\mathrm{21}{x}\:+\:\mathrm{10}\:=\:\mathrm{0} \\ $$$${x}_{\mathrm{3}} \:=\:\frac{\mathrm{21}\:−\:\sqrt{\mathrm{401}}}{\mathrm{2}} \\ $$$${x}_{\mathrm{4}} \:=\:\frac{\mathrm{21}\:+\:\sqrt{\mathrm{401}}}{\mathrm{2}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com