Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 40138 by maxmathsup by imad last updated on 16/Jul/18

let  a_k    =∫_(−(π/(2 )) +kπ) ^(−(π/2) +(k+1)π)  e^(−t)  cost dt  1) calculate a_k   2) find lim_(n→+∞)   Σ_(k=0) ^n   ∣a_k ∣.

$${let}\:\:{a}_{{k}} \:\:\:=\int_{−\frac{\pi}{\mathrm{2}\:}\:+{k}\pi} ^{−\frac{\pi}{\mathrm{2}}\:+\left({k}+\mathrm{1}\right)\pi} \:{e}^{−{t}} \:{cost}\:{dt} \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:{a}_{{k}} \\ $$$$\left.\mathrm{2}\right)\:{find}\:{lim}_{{n}\rightarrow+\infty} \:\:\sum_{{k}=\mathrm{0}} ^{{n}} \:\:\mid{a}_{{k}} \mid. \\ $$

Commented by maxmathsup by imad last updated on 20/Jul/18

1) we have a_k =_(t=kπ +x)     ∫_(−(π/2)) ^(π/2)   e^(−(kπ+x))  cos(x+kπ)dx  = ∫_(−(π/2)) ^(π/2)   e^(−kπ)  e^(−x)  (−1)^k cosx dx  =(−1)^k  e^(−kπ)   ∫_(−(π/2)) ^(π/2)  e^(−x)  cosxdx but ∫_(−(π/2)) ^(π/2)  e^(−x) cosx dx=Re( ∫_(−(π/2)) ^(π/2)  e^(−x)  e^(ix) )  =Re( ∫_(−(π/2)) ^(π/2)  e^((−1+i)x) dx) =Re( [(1/(−1+i)) e^((−1+i)x) ]_(−(π/2)) ^(π/2)   =Re( (1/(−1+i))( e^((−1+i)(π/2))  −e^(−(−1+i)(π/2)) ))  =Re{  ((−1)/(1−i))( e^(−(π/2)) i + e^(π/2) i}=Re { ((−i)/(1−i))( e^(π/2)  +e^(−(π/2)) )}  =Re(  ((−i(1+i))/2)( e^(π/2)  +e^(−(π/2)) ))= Re(  ((−i+1)/2)(e^(π/2)  +e^(−(π/2)) ))  =((e^(π/2)  +e^(−(π/2)) )/2) =ch((π/2)) ⇒  a_k =(−1)^k  e^(−kπ)  ch((π/2)) .

$$\left.\mathrm{1}\right)\:{we}\:{have}\:{a}_{{k}} =_{{t}={k}\pi\:+{x}} \:\:\:\:\int_{−\frac{\pi}{\mathrm{2}}} ^{\frac{\pi}{\mathrm{2}}} \:\:{e}^{−\left({k}\pi+{x}\right)} \:{cos}\left({x}+{k}\pi\right){dx} \\ $$$$=\:\int_{−\frac{\pi}{\mathrm{2}}} ^{\frac{\pi}{\mathrm{2}}} \:\:{e}^{−{k}\pi} \:{e}^{−{x}} \:\left(−\mathrm{1}\right)^{{k}} {cosx}\:{dx} \\ $$$$=\left(−\mathrm{1}\right)^{{k}} \:{e}^{−{k}\pi} \:\:\int_{−\frac{\pi}{\mathrm{2}}} ^{\frac{\pi}{\mathrm{2}}} \:{e}^{−{x}} \:{cosxdx}\:{but}\:\int_{−\frac{\pi}{\mathrm{2}}} ^{\frac{\pi}{\mathrm{2}}} \:{e}^{−{x}} {cosx}\:{dx}={Re}\left(\:\int_{−\frac{\pi}{\mathrm{2}}} ^{\frac{\pi}{\mathrm{2}}} \:{e}^{−{x}} \:{e}^{{ix}} \right) \\ $$$$={Re}\left(\:\int_{−\frac{\pi}{\mathrm{2}}} ^{\frac{\pi}{\mathrm{2}}} \:{e}^{\left(−\mathrm{1}+{i}\right){x}} {dx}\right)\:={Re}\left(\:\left[\frac{\mathrm{1}}{−\mathrm{1}+{i}}\:{e}^{\left(−\mathrm{1}+{i}\right){x}} \right]_{−\frac{\pi}{\mathrm{2}}} ^{\frac{\pi}{\mathrm{2}}} \right. \\ $$$$={Re}\left(\:\frac{\mathrm{1}}{−\mathrm{1}+{i}}\left(\:{e}^{\left(−\mathrm{1}+{i}\right)\frac{\pi}{\mathrm{2}}} \:−{e}^{−\left(−\mathrm{1}+{i}\right)\frac{\pi}{\mathrm{2}}} \right)\right) \\ $$$$={Re}\left\{\:\:\frac{−\mathrm{1}}{\mathrm{1}−{i}}\left(\:{e}^{−\frac{\pi}{\mathrm{2}}} {i}\:+\:{e}^{\frac{\pi}{\mathrm{2}}} {i}\right\}={Re}\:\left\{\:\frac{−{i}}{\mathrm{1}−{i}}\left(\:{e}^{\frac{\pi}{\mathrm{2}}} \:+{e}^{−\frac{\pi}{\mathrm{2}}} \right)\right\}\right. \\ $$$$={Re}\left(\:\:\frac{−{i}\left(\mathrm{1}+{i}\right)}{\mathrm{2}}\left(\:{e}^{\frac{\pi}{\mathrm{2}}} \:+{e}^{−\frac{\pi}{\mathrm{2}}} \right)\right)=\:{Re}\left(\:\:\frac{−{i}+\mathrm{1}}{\mathrm{2}}\left({e}^{\frac{\pi}{\mathrm{2}}} \:+{e}^{−\frac{\pi}{\mathrm{2}}} \right)\right) \\ $$$$=\frac{{e}^{\frac{\pi}{\mathrm{2}}} \:+{e}^{−\frac{\pi}{\mathrm{2}}} }{\mathrm{2}}\:={ch}\left(\frac{\pi}{\mathrm{2}}\right)\:\Rightarrow \\ $$$${a}_{{k}} =\left(−\mathrm{1}\right)^{{k}} \:{e}^{−{k}\pi} \:{ch}\left(\frac{\pi}{\mathrm{2}}\right)\:. \\ $$

Commented by maxmathsup by imad last updated on 20/Jul/18

2) let S_n = Σ_(k=0) ^n   ∣a_k ∣  S_n = Σ_(k=0) ^n   ch((π/2)) (e^(−π) )^k =ch((π/2))Σ_(k=0) ^n  (e^(−π) )^k   =ch((π/2)) ((1−e^(−(n+1)π) )/(1−e^(−π) )) ⇒ lim_(n→+∞)   S_n = ((ch((π/2)))/(1−e^(−π) )) .

$$\left.\mathrm{2}\right)\:{let}\:{S}_{{n}} =\:\sum_{{k}=\mathrm{0}} ^{{n}} \:\:\mid{a}_{{k}} \mid \\ $$$${S}_{{n}} =\:\sum_{{k}=\mathrm{0}} ^{{n}} \:\:{ch}\left(\frac{\pi}{\mathrm{2}}\right)\:\left({e}^{−\pi} \right)^{{k}} ={ch}\left(\frac{\pi}{\mathrm{2}}\right)\sum_{{k}=\mathrm{0}} ^{{n}} \:\left({e}^{−\pi} \right)^{{k}} \\ $$$$={ch}\left(\frac{\pi}{\mathrm{2}}\right)\:\frac{\mathrm{1}−{e}^{−\left({n}+\mathrm{1}\right)\pi} }{\mathrm{1}−{e}^{−\pi} }\:\Rightarrow\:{lim}_{{n}\rightarrow+\infty} \:\:{S}_{{n}} =\:\frac{{ch}\left(\frac{\pi}{\mathrm{2}}\right)}{\mathrm{1}−{e}^{−\pi} }\:. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com