Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 40140 by maxmathsup by imad last updated on 16/Jul/18

calculate  ∫_0 ^(π/2)    ((sin(x)dx)/(cos^2 x +a^2  sin^2 x))dx

calculate0π2sin(x)dxcos2x+a2sin2xdx

Commented by math khazana by abdo last updated on 20/Jul/18

let I = ∫_0 ^(π/2)     ((sinx)/(cos^2 x +a^2 sin^2 x))dx changement  cosx =t give   I  = −∫_0 ^1     ((−dt)/(t^2  +a^2 (1−t^2 )))  = ∫_0 ^1     (dt/(a^2  +(1−a^2 )t^2 )) = (1/a^2 ) ∫_0 ^1     (dt/(1+((1−a^2 )/a^2 )t^2 ))  ( a≠o)  case 1  1−a^2 >0 ⇔∣a∣<1  we do the changement  (√((1−a^2 )/a^2 )) t =u ⇒  I  = (1/a^2 )  ∫_0 ^(√((1−a^2 )/(a^2  )))         (1/(1+u^2 )) (√(a^2 /(1−a^2 ))) du  =((∣a∣)/(a^2  (√(1−a^2 ))))  ∫_0 ^((√(1−a^2 ))/(∣a∣))    (du/(1+u^2 ))  = ((ξ(a))/(a(√(1−a^2 )))) arctan(((√(1−a^2 ))/(∣a∣)))   ξ(a)=1 if a>0 and ξ(a)=−1 ifa<0  case 2  1−a^2 <0 ⇒∣a∣>1 ⇒  I = (1/a^2 ) ∫_0 ^1       (dt/(1−((a^2 −1)/a^2 )t^2 )) we do the changement  (√((a^2  −1)/a^2 )) t =u ⇒  I = (1/a^2 ) ∫_0 ^((√(a^2  −1))/(∣a∣))       (1/(1−u^2 ))  ((∣a∣)/(√(a^2  −1))) du  = ((ξ(a))/(√(a^2  −1)))  (1/2)∫_0 ^((√(a^2  −1))/(∣a∣))    ((1/(1+u)) +(1/(1−u)))du  = ((ξ(a))/(2(√(a^2  −1)))) [ln∣((1+u)/(1−u))∣]_0 ^((√(a^2  −1))/(∣a∣))   =((ξ(a))/(2(√(a^2  −1)))) ln(((1+((√(a^2 −1))/(∣a∣)))/(1−((√(a^2  −1))/(∣a∣)))))  =((ξ(a))/(2(√(a^2 −1)))) ln(((∣a∣ +(√(a^2  −1)))/(∣a∣−(√(a^2  −1))))) .

letI=0π2sinxcos2x+a2sin2xdxchangementcosx=tgiveI=01dtt2+a2(1t2)=01dta2+(1a2)t2=1a201dt1+1a2a2t2(ao)case11a2>0⇔∣a∣<1wedothechangement1a2a2t=uI=1a201a2a211+u2a21a2du=aa21a201a2adu1+u2=ξ(a)a1a2arctan(1a2a)ξ(a)=1ifa>0andξ(a)=1ifa<0case21a2<0⇒∣a∣>1I=1a201dt1a21a2t2wedothechangementa21a2t=uI=1a20a21a11u2aa21du=ξ(a)a21120a21a(11+u+11u)du=ξ(a)2a21[ln1+u1u]0a21a=ξ(a)2a21ln(1+a21a1a21a)=ξ(a)2a21ln(a+a21aa21).

Answered by tanmay.chaudhury50@gmail.com last updated on 18/Jul/18

t=cosx  dt=−sinx dx  ∫_1 ^0 ((−dt)/(t^2 +a^2 (1−t^2 )))  ∫_0 ^1 (dt/(a^2 +t^2 (1−a^2 )))  =(1/(1−a^2 )) ∫_0 ^1 (dt/((a^2 /(1−a^2 ))+t^2 ))  =(1/(1−a^2 ))×(((√(1−a^2 )) )/a)∣tan^(−1) ((t/(√(a^2 /(1−a^2 )))))∣_0 ^1   =(((√(1−a^2 )) )/((a−a^3 )))∣tan^(−1) (((t(√(1−a^2  )))/a))∣_0 ^1   =((√(1−a^2 ))/(a−a^3 ))tan^(−1) (((√(1−a^2 ))/a))

t=cosxdt=sinxdx10dtt2+a2(1t2)01dta2+t2(1a2)=11a201dta21a2+t2=11a2×1a2atan1(ta21a2)01=1a2(aa3)tan1(t1a2a)01=1a2aa3tan1(1a2a)

Commented by math khazana by abdo last updated on 20/Jul/18

sir Tanmay  you must studythe cases ∣a∣>1  and ∣a∣<1 ....

sirTanmayyoumuststudythecasesa∣>1anda∣<1....

Terms of Service

Privacy Policy

Contact: info@tinkutara.com