Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 40155 by maxmathsup by imad last updated on 16/Jul/18

caoculate  ∫_0 ^∞     ((t dt)/((1+t^4 )^2 ))

$${caoculate}\:\:\int_{\mathrm{0}} ^{\infty} \:\:\:\:\frac{{t}\:{dt}}{\left(\mathrm{1}+{t}^{\mathrm{4}} \right)^{\mathrm{2}} } \\ $$

Commented by maxmathsup by imad last updated on 16/Jul/18

Residus method  changement t^2 = x   give    I  = (1/2)∫_0 ^∞    ((2t)/((1+t^4 )^2 ))dt =(1/2) ∫_0 ^∞    (dx/((1+x^2 )^2 )) =(1/4) ∫_(−∞) ^(+∞)     (dx/((1+x^2 )^2 ))  let ϕ(z) = (1/((z^2  +1)^2 ))  we have ϕ(z) = (1/((z−i)^2 (z+i)^2 ))  ∫_(−∞) ^(+∞)   ϕ(z)dz =2iπ Res(ϕ,i)  Res(ϕ,i) =lim_(z→i) { (z−i)^2 ϕ(z)}^((1))   =lim_(z→i) {(z+i)^(−2) }^((1)) =lim_(z→i)    −2(z+i)^(−3) =−2(2i)^(−3)  = ((−2)/((2i)^3 )) =((−2)/(−8i)) =(1/(4i))  I = (1/4) (2iπ)(1/(4i)) ⇒ I =(π/8) .

$${Residus}\:{method} \\ $$$${changement}\:{t}^{\mathrm{2}} =\:{x}\:\:\:{give}\:\: \\ $$$${I}\:\:=\:\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{\mathrm{2}{t}}{\left(\mathrm{1}+{t}^{\mathrm{4}} \right)^{\mathrm{2}} }{dt}\:=\frac{\mathrm{1}}{\mathrm{2}}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{dx}}{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)^{\mathrm{2}} }\:=\frac{\mathrm{1}}{\mathrm{4}}\:\int_{−\infty} ^{+\infty} \:\:\:\:\frac{{dx}}{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)^{\mathrm{2}} } \\ $$$${let}\:\varphi\left({z}\right)\:=\:\frac{\mathrm{1}}{\left({z}^{\mathrm{2}} \:+\mathrm{1}\right)^{\mathrm{2}} }\:\:{we}\:{have}\:\varphi\left({z}\right)\:=\:\frac{\mathrm{1}}{\left({z}−{i}\right)^{\mathrm{2}} \left({z}+{i}\right)^{\mathrm{2}} } \\ $$$$\int_{−\infty} ^{+\infty} \:\:\varphi\left({z}\right){dz}\:=\mathrm{2}{i}\pi\:{Res}\left(\varphi,{i}\right) \\ $$$${Res}\left(\varphi,{i}\right)\:={lim}_{{z}\rightarrow{i}} \left\{\:\left({z}−{i}\right)^{\mathrm{2}} \varphi\left({z}\right)\right\}^{\left(\mathrm{1}\right)} \\ $$$$={lim}_{{z}\rightarrow{i}} \left\{\left({z}+{i}\right)^{−\mathrm{2}} \right\}^{\left(\mathrm{1}\right)} ={lim}_{{z}\rightarrow{i}} \:\:\:−\mathrm{2}\left({z}+{i}\right)^{−\mathrm{3}} =−\mathrm{2}\left(\mathrm{2}{i}\right)^{−\mathrm{3}} \:=\:\frac{−\mathrm{2}}{\left(\mathrm{2}{i}\right)^{\mathrm{3}} }\:=\frac{−\mathrm{2}}{−\mathrm{8}{i}}\:=\frac{\mathrm{1}}{\mathrm{4}{i}} \\ $$$${I}\:=\:\frac{\mathrm{1}}{\mathrm{4}}\:\left(\mathrm{2}{i}\pi\right)\frac{\mathrm{1}}{\mathrm{4}{i}}\:\Rightarrow\:{I}\:=\frac{\pi}{\mathrm{8}}\:. \\ $$

Answered by ajfour last updated on 16/Jul/18

I=(1/2)∫_0 ^(  ∞) (dz/((1+z^2 )^2 ))     where z=t^2      let  z=tan θ   ⇒  dz=sec^2 θdθ    I=(1/4)∫_0 ^(  π/2) (1+cos 2θ)dθ      =(π/8) .

$${I}=\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\:\:\infty} \frac{{dz}}{\left(\mathrm{1}+{z}^{\mathrm{2}} \right)^{\mathrm{2}} }\:\:\:\:\:{where}\:{z}={t}^{\mathrm{2}} \\ $$$$\:\:\:{let}\:\:{z}=\mathrm{tan}\:\theta\:\:\:\Rightarrow\:\:{dz}=\mathrm{sec}\:^{\mathrm{2}} \theta{d}\theta \\ $$$$\:\:{I}=\frac{\mathrm{1}}{\mathrm{4}}\int_{\mathrm{0}} ^{\:\:\pi/\mathrm{2}} \left(\mathrm{1}+\mathrm{cos}\:\mathrm{2}\theta\right){d}\theta \\ $$$$\:\:\:\:=\frac{\pi}{\mathrm{8}}\:. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com