Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 40159 by maxmathsup by imad last updated on 16/Jul/18

let I_n = ∫_0 ^∞     (dx/((1+x^3 )^n ))  find a relation etween I_n  and I_(n+1)   2) calculate I_(1 )  and I_2

$${let}\:{I}_{{n}} =\:\int_{\mathrm{0}} ^{\infty} \:\:\:\:\frac{{dx}}{\left(\mathrm{1}+{x}^{\mathrm{3}} \right)^{{n}} } \\ $$$${find}\:{a}\:{relation}\:{etween}\:{I}_{{n}} \:{and}\:{I}_{{n}+\mathrm{1}} \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:{I}_{\mathrm{1}\:} \:{and}\:{I}_{\mathrm{2}} \\ $$

Commented by prof Abdo imad last updated on 17/Jul/18

1) we have  I_n = ∫_0 ^∞     ((1+x^3 )/((1+x^3 )^(n+1) ))dx  =I_(n+1)   + ∫_0 ^∞    (x^3 /((1+x^3 )^(n+1) ))dx  by parts  ∫_0 ^∞     (x^3 /((1+x^3 )^3 ))dx =(1/3)∫_0 ^∞   x(((3x^2 )/((1+x^3 )^(n+1) )))dx  =(1/3)∫_0 ^∞   x ( 3x^2  (1+x^3 )^(−n−1) )dx  =(1/3)[−(x/n)(1+x^3 )^(−n) ]_0 ^(+∞)  −(1/3)∫_0 ^∞   1 (−(1/n))(1/((1+x^3 )^n ))dx  = (1/(3n))  I_n  ⇒ I_n = I_(n+1)    +(1/(3n)) I_n  ⇒  (1−(1/(3n))) I_n  = I_(n+1)   ⇒ I_(n+1) =((3n−1)/(3n)) I_n   2) we have I_1 = ∫_0 ^∞     (dx/(1+x^3 ))  =_(x^ =t^(1/3) )     ∫_0 ^∞     (1/(1+t)) (1/3)t^((1/3)−1) dt =(1/3) ∫_0 ^∞     (t^((1/3)−1) /(1+t))dt  =(1/3) (π/(sin((π/3)))) =(π/(3.((√3)/2))) = ((2π)/(3(√3)))  I_2 = (2/3) I_1 = (2/3) ((2π)/(3(√3))) = ((4π)/(9(√3)))  .

$$\left.\mathrm{1}\right)\:{we}\:{have}\:\:{I}_{{n}} =\:\int_{\mathrm{0}} ^{\infty} \:\:\:\:\frac{\mathrm{1}+{x}^{\mathrm{3}} }{\left(\mathrm{1}+{x}^{\mathrm{3}} \right)^{{n}+\mathrm{1}} }{dx} \\ $$$$={I}_{{n}+\mathrm{1}} \:\:+\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{x}^{\mathrm{3}} }{\left(\mathrm{1}+{x}^{\mathrm{3}} \right)^{{n}+\mathrm{1}} }{dx}\:\:{by}\:{parts} \\ $$$$\int_{\mathrm{0}} ^{\infty} \:\:\:\:\frac{{x}^{\mathrm{3}} }{\left(\mathrm{1}+{x}^{\mathrm{3}} \right)^{\mathrm{3}} }{dx}\:=\frac{\mathrm{1}}{\mathrm{3}}\int_{\mathrm{0}} ^{\infty} \:\:{x}\left(\frac{\mathrm{3}{x}^{\mathrm{2}} }{\left(\mathrm{1}+{x}^{\mathrm{3}} \right)^{{n}+\mathrm{1}} }\right){dx} \\ $$$$=\frac{\mathrm{1}}{\mathrm{3}}\int_{\mathrm{0}} ^{\infty} \:\:{x}\:\left(\:\mathrm{3}{x}^{\mathrm{2}} \:\left(\mathrm{1}+{x}^{\mathrm{3}} \right)^{−{n}−\mathrm{1}} \right){dx} \\ $$$$=\frac{\mathrm{1}}{\mathrm{3}}\left[−\frac{{x}}{{n}}\left(\mathrm{1}+{x}^{\mathrm{3}} \right)^{−{n}} \right]_{\mathrm{0}} ^{+\infty} \:−\frac{\mathrm{1}}{\mathrm{3}}\int_{\mathrm{0}} ^{\infty} \:\:\mathrm{1}\:\left(−\frac{\mathrm{1}}{{n}}\right)\frac{\mathrm{1}}{\left(\mathrm{1}+{x}^{\mathrm{3}} \right)^{{n}} }{dx} \\ $$$$=\:\frac{\mathrm{1}}{\mathrm{3}{n}}\:\:{I}_{{n}} \:\Rightarrow\:{I}_{{n}} =\:{I}_{{n}+\mathrm{1}} \:\:\:+\frac{\mathrm{1}}{\mathrm{3}{n}}\:{I}_{{n}} \:\Rightarrow \\ $$$$\left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{3}{n}}\right)\:{I}_{{n}} \:=\:{I}_{{n}+\mathrm{1}} \:\:\Rightarrow\:{I}_{{n}+\mathrm{1}} =\frac{\mathrm{3}{n}−\mathrm{1}}{\mathrm{3}{n}}\:{I}_{{n}} \\ $$$$\left.\mathrm{2}\right)\:{we}\:{have}\:{I}_{\mathrm{1}} =\:\int_{\mathrm{0}} ^{\infty} \:\:\:\:\frac{{dx}}{\mathrm{1}+{x}^{\mathrm{3}} } \\ $$$$=_{{x}^{} ={t}^{\frac{\mathrm{1}}{\mathrm{3}}} } \:\:\:\:\int_{\mathrm{0}} ^{\infty} \:\:\:\:\frac{\mathrm{1}}{\mathrm{1}+{t}}\:\frac{\mathrm{1}}{\mathrm{3}}{t}^{\frac{\mathrm{1}}{\mathrm{3}}−\mathrm{1}} {dt}\:=\frac{\mathrm{1}}{\mathrm{3}}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\:\frac{{t}^{\frac{\mathrm{1}}{\mathrm{3}}−\mathrm{1}} }{\mathrm{1}+{t}}{dt} \\ $$$$=\frac{\mathrm{1}}{\mathrm{3}}\:\frac{\pi}{{sin}\left(\frac{\pi}{\mathrm{3}}\right)}\:=\frac{\pi}{\mathrm{3}.\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}}\:=\:\frac{\mathrm{2}\pi}{\mathrm{3}\sqrt{\mathrm{3}}} \\ $$$${I}_{\mathrm{2}} =\:\frac{\mathrm{2}}{\mathrm{3}}\:{I}_{\mathrm{1}} =\:\frac{\mathrm{2}}{\mathrm{3}}\:\frac{\mathrm{2}\pi}{\mathrm{3}\sqrt{\mathrm{3}}}\:=\:\frac{\mathrm{4}\pi}{\mathrm{9}\sqrt{\mathrm{3}}}\:\:. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com