Question and Answers Forum

All Questions      Topic List

Set Theory Questions

Previous in All Question      Next in All Question      

Previous in Set Theory      Next in Set Theory      

Question Number 4027 by Rasheed Soomro last updated on 27/Dec/15

Let A denotes the Set of Algebraic Numbers  and  T   the Set of Trancedental Numbers.  Discuss the following:  •Are A and T  closed with respect to    addition and multiplication ?  •Are A−{0)  and T  closed with respect to    division?

$${Let}\:\mathbb{A}\:{denotes}\:{the}\:{Set}\:{of}\:{Algebraic}\:{Numbers} \\ $$$${and}\:\:\mathbb{T}\:\:\:{the}\:{Set}\:{of}\:{Trancedental}\:{Numbers}. \\ $$$${Discuss}\:{the}\:{following}: \\ $$$$\bullet{Are}\:\mathbb{A}\:{and}\:\mathbb{T}\:\:\boldsymbol{{closed}}\:{with}\:{respect}\:{to}\:\: \\ $$$$\boldsymbol{{addition}}\:{and}\:\boldsymbol{{multiplication}}\:? \\ $$$$\bullet{Are}\:\mathbb{A}−\left\{\mathrm{0}\right)\:\:{and}\:\mathbb{T}\:\:\boldsymbol{{closed}}\:{with}\:{respect}\:{to}\:\: \\ $$$$\boldsymbol{{division}}? \\ $$

Commented by Yozzii last updated on 27/Dec/15

Algebraic numbers are solutions  to finite,non−zero polynomials whose  coefficients are rational numbers  and are in one variable.  Thus, x∈A⇒ x∈Q or x∈C−{transendental complex numbers}  x∈T⇒x∉A.   Note that ∃x∈A which are irrational  e.g the solution to x^2 −2=0.  Also x∈A could be a trigonometric  function applied to a rational multiple  of π.  e.g cos3r=4cos^3 r−3cosr.  let p=cosr and cos3r=0⇒3r=2nπ±(π/2) (n∈Z)  r=(1/3)(2nπ±(π/2))  ∴ 4p^3 −3p=0 has solutions  p=cos((1/3)(2nπ±(π/2))) (n=0,1)    Under the binary operation ∗ for  addition, closure of A is provided  since A⊂C exhibits closure.  T is not closed under ∗ since, for  example, −π,π∈T⇒(π)+(−π)=0∉T.    Define ⊕ as the binary operation of  multiplication. A does exhibit closure  by virtue of C exhbiting closure  under ⊕ and A⊂C. T is not closed  under multiplication since, for 2π,(1/π)∈T,  2π⊕(1/π)=2∉T.

$${Algebraic}\:{numbers}\:{are}\:{solutions} \\ $$$${to}\:{finite},{non}−{zero}\:{polynomials}\:{whose} \\ $$$${coefficients}\:{are}\:{rational}\:{numbers} \\ $$$${and}\:{are}\:{in}\:{one}\:{variable}. \\ $$$${Thus},\:{x}\in\mathbb{A}\Rightarrow\:{x}\in\mathbb{Q}\:{or}\:{x}\in\mathbb{C}−\left\{{transendental}\:{complex}\:{numbers}\right\} \\ $$$${x}\in\mathbb{T}\Rightarrow{x}\notin\mathbb{A}.\: \\ $$$${Note}\:{that}\:\exists{x}\in\mathbb{A}\:{which}\:{are}\:{irrational} \\ $$$${e}.{g}\:{the}\:{solution}\:{to}\:{x}^{\mathrm{2}} −\mathrm{2}=\mathrm{0}. \\ $$$${Also}\:{x}\in\mathbb{A}\:{could}\:{be}\:{a}\:{trigonometric} \\ $$$${function}\:{applied}\:{to}\:{a}\:{rational}\:{multiple} \\ $$$${of}\:\pi. \\ $$$${e}.{g}\:{cos}\mathrm{3}{r}=\mathrm{4}{cos}^{\mathrm{3}} {r}−\mathrm{3}{cosr}. \\ $$$${let}\:{p}={cosr}\:{and}\:{cos}\mathrm{3}{r}=\mathrm{0}\Rightarrow\mathrm{3}{r}=\mathrm{2}{n}\pi\pm\frac{\pi}{\mathrm{2}}\:\left({n}\in\mathbb{Z}\right) \\ $$$${r}=\frac{\mathrm{1}}{\mathrm{3}}\left(\mathrm{2}{n}\pi\pm\frac{\pi}{\mathrm{2}}\right) \\ $$$$\therefore\:\mathrm{4}{p}^{\mathrm{3}} −\mathrm{3}{p}=\mathrm{0}\:{has}\:{solutions} \\ $$$${p}={cos}\left(\frac{\mathrm{1}}{\mathrm{3}}\left(\mathrm{2}{n}\pi\pm\frac{\pi}{\mathrm{2}}\right)\right)\:\left({n}=\mathrm{0},\mathrm{1}\right) \\ $$$$ \\ $$$${Under}\:{the}\:{binary}\:{operation}\:\ast\:{for} \\ $$$${addition},\:{closure}\:{of}\:\mathbb{A}\:{is}\:{provided} \\ $$$${since}\:\mathbb{A}\subset\mathbb{C}\:{exhibits}\:{closure}. \\ $$$$\mathbb{T}\:{is}\:{not}\:{closed}\:{under}\:\ast\:{since},\:{for} \\ $$$${example},\:−\pi,\pi\in\mathbb{T}\Rightarrow\left(\pi\right)+\left(−\pi\right)=\mathrm{0}\notin\mathbb{T}. \\ $$$$ \\ $$$${Define}\:\oplus\:{as}\:{the}\:{binary}\:{operation}\:{of} \\ $$$${multiplication}.\:\mathbb{A}\:{does}\:{exhibit}\:{closure} \\ $$$${by}\:{virtue}\:{of}\:\mathbb{C}\:{exhbiting}\:{closure} \\ $$$${under}\:\oplus\:{and}\:\mathbb{A}\subset\mathbb{C}.\:\mathbb{T}\:{is}\:{not}\:{closed} \\ $$$${under}\:{multiplication}\:{since},\:{for}\:\mathrm{2}\pi,\frac{\mathrm{1}}{\pi}\in\mathbb{T}, \\ $$$$\mathrm{2}\pi\oplus\frac{\mathrm{1}}{\pi}=\mathrm{2}\notin\mathbb{T}. \\ $$$$ \\ $$$$ \\ $$$$ \\ $$

Commented by Rasheed Soomro last updated on 27/Dec/15

EX_(PLANATION) ^(CELLENT)   !!!

$$\mathcal{EX}_{\mathcal{PLANATION}} ^{\mathcal{CELLENT}} \:\:!!! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com