All Questions Topic List
Differentiation Questions
Previous in All Question Next in All Question
Previous in Differentiation Next in Differentiation
Question Number 40276 by Raj Singh last updated on 18/Jul/18
Answered by MJS last updated on 18/Jul/18
ddx[sinx1+tanx]=cos3x−sin3x1+2sinxcosxzerosatx=π4(4k+1)∧k∈Zmaxatx=π4(4k+1)∧k=2n∧n∈Z⇒⇒maxayx=π4(8n+1)∧n∈Z∧y=24minatx=π4(1+4k)∧k=2n+1∧n∈Z⇒⇒minatx=π4(8n+5)∧n∈Z∧y=−24
Answered by tanmay.chaudhury50@gmail.com last updated on 18/Jul/18
dydx=(1+tanx)cosx−sinx(sec2x)(1+tanx)2formax/mindydx=0cosx+sinx−sinxcos2x=0cos3x+sinxcos2x−sinx=0cos3x+sinx(1−sin2x)−sinx=0cos3x−sin3x=0tan3x=1(tanx−1)(tan2x+tanx+1)=0x=Π4dydx=(1+tanx)cosx−sinx(sec2x)(1+tanx)2=cosx+sinx−sinxcos2x(1+tanx)2=cos3x+sinxcos2x−sinxcos2x(1+tanx)2=cos3x+sinx(1−sin2x)−sinxcos2x(1+tanx)2=cos3x−sin3xcos2x(1+tanx)2atx=Π4dydx=0cosx>sinxwhenx<Π4dydx=+vecosx<sinxwhenx>Π4dydx=−vesosignchangeofdydxfrom+veto−vesoatx=Π4sinx1+tanxismaximumandmaxvalueis121+1=122
Terms of Service
Privacy Policy
Contact: info@tinkutara.com