Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 40276 by Raj Singh last updated on 18/Jul/18

Answered by MJS last updated on 18/Jul/18

(d/dx)[((sin x)/(1+tan x))]=((cos^3  x −sin^3  x)/(1+2sin x cos x))  zeros at x=(π/4)(4k+1) ∧ k∈Z  max at x=(π/4)(4k+1) ∧ k=2n ∧ n∈Z ⇒  ⇒ max ay x=(π/4)(8n+1) ∧ n∈Z ∧ y=((√2)/4)  min at x=(π/4)(1+4k) ∧ k=2n+1 ∧ n∈Z ⇒  ⇒ min at x=(π/4)(8n+5) ∧ n∈Z ∧ y=−((√2)/4)

$$\frac{{d}}{{dx}}\left[\frac{\mathrm{sin}\:{x}}{\mathrm{1}+\mathrm{tan}\:{x}}\right]=\frac{\mathrm{cos}^{\mathrm{3}} \:{x}\:−\mathrm{sin}^{\mathrm{3}} \:{x}}{\mathrm{1}+\mathrm{2sin}\:{x}\:\mathrm{cos}\:{x}} \\ $$$$\mathrm{zeros}\:\mathrm{at}\:{x}=\frac{\pi}{\mathrm{4}}\left(\mathrm{4}{k}+\mathrm{1}\right)\:\wedge\:{k}\in\mathbb{Z} \\ $$$$\mathrm{max}\:\mathrm{at}\:{x}=\frac{\pi}{\mathrm{4}}\left(\mathrm{4}{k}+\mathrm{1}\right)\:\wedge\:{k}=\mathrm{2}{n}\:\wedge\:{n}\in\mathbb{Z}\:\Rightarrow \\ $$$$\Rightarrow\:\mathrm{max}\:\mathrm{ay}\:{x}=\frac{\pi}{\mathrm{4}}\left(\mathrm{8}{n}+\mathrm{1}\right)\:\wedge\:{n}\in\mathbb{Z}\:\wedge\:{y}=\frac{\sqrt{\mathrm{2}}}{\mathrm{4}} \\ $$$$\mathrm{min}\:\mathrm{at}\:{x}=\frac{\pi}{\mathrm{4}}\left(\mathrm{1}+\mathrm{4}{k}\right)\:\wedge\:{k}=\mathrm{2}{n}+\mathrm{1}\:\wedge\:{n}\in\mathbb{Z}\:\Rightarrow \\ $$$$\Rightarrow\:\mathrm{min}\:\mathrm{at}\:{x}=\frac{\pi}{\mathrm{4}}\left(\mathrm{8}{n}+\mathrm{5}\right)\:\wedge\:{n}\in\mathbb{Z}\:\wedge\:{y}=−\frac{\sqrt{\mathrm{2}}}{\mathrm{4}} \\ $$

Answered by tanmay.chaudhury50@gmail.com last updated on 18/Jul/18

(dy/dx)=(((1+tanx)cosx−sinx(sec^2 x))/((1+tanx)^2 ))  for max/min  (dy/dx)=0  cosx+sinx−((sinx)/(cos^2 x))=0  cos^3 x+sinxcos^2 x−sinx=0  cos^3 x+sinx(1−sin^2 x)−sinx=0  cos^3 x−sin^3 x=0  tan^3 x=1  (tanx−1)(tan^2 x+tanx+1)=0    x=(Π/4)  (dy/dx)=(((1+tanx)cosx−sinx(sec^2 x))/((1+tanx)^2 ))  =((cosx+sinx−((sinx)/(cos^2 x)))/((1+tanx)^2 ))  =((cos^3 x+sinxcos^2 x−sinx)/(cos^2 x(1+tanx)^2 ))  =((cos^3 x+sinx(1−sin^2 x)−sinx)/(cos^2 x(1+tanx)^2 ))  =((cos^3 x−sin^3 x)/(cos^2 x(1+tanx)^2 ))  at x=(Π/4)  (dy/dx)=0  cosx>sinx  when x<(Π/4)  (dy/dx)=+ve  cosx<sinx  when x>(Π/4) (dy/dx)=−ve  so sign change of (dy/dx)  from +ve to −ve   so at x=(Π/4) ((sinx)/(1+tanx)) is maximum  and max value is  ((1/(√2))/(1+1))=(1/(2(√2) ))

$$\frac{{dy}}{{dx}}=\frac{\left(\mathrm{1}+{tanx}\right){cosx}−{sinx}\left({sec}^{\mathrm{2}} {x}\right)}{\left(\mathrm{1}+{tanx}\right)^{\mathrm{2}} } \\ $$$${for}\:{max}/{min}\:\:\frac{{dy}}{{dx}}=\mathrm{0} \\ $$$${cosx}+{sinx}−\frac{{sinx}}{{cos}^{\mathrm{2}} {x}}=\mathrm{0} \\ $$$${cos}^{\mathrm{3}} {x}+{sinxcos}^{\mathrm{2}} {x}−{sinx}=\mathrm{0} \\ $$$${cos}^{\mathrm{3}} {x}+{sinx}\left(\mathrm{1}−{sin}^{\mathrm{2}} {x}\right)−{sinx}=\mathrm{0} \\ $$$${cos}^{\mathrm{3}} {x}−{sin}^{\mathrm{3}} {x}=\mathrm{0} \\ $$$${tan}^{\mathrm{3}} {x}=\mathrm{1} \\ $$$$\left({tanx}−\mathrm{1}\right)\left({tan}^{\mathrm{2}} {x}+{tanx}+\mathrm{1}\right)=\mathrm{0} \\ $$$$ \\ $$$${x}=\frac{\Pi}{\mathrm{4}} \\ $$$$\frac{{dy}}{{dx}}=\frac{\left(\mathrm{1}+{tanx}\right){cosx}−{sinx}\left({sec}^{\mathrm{2}} {x}\right)}{\left(\mathrm{1}+{tanx}\right)^{\mathrm{2}} } \\ $$$$=\frac{{cosx}+{sinx}−\frac{{sinx}}{{cos}^{\mathrm{2}} {x}}}{\left(\mathrm{1}+{tanx}\right)^{\mathrm{2}} } \\ $$$$=\frac{{cos}^{\mathrm{3}} {x}+{sinxcos}^{\mathrm{2}} {x}−{sinx}}{{cos}^{\mathrm{2}} {x}\left(\mathrm{1}+{tanx}\right)^{\mathrm{2}} } \\ $$$$=\frac{{cos}^{\mathrm{3}} {x}+{sinx}\left(\mathrm{1}−{sin}^{\mathrm{2}} {x}\right)−{sinx}}{{cos}^{\mathrm{2}} {x}\left(\mathrm{1}+{tanx}\right)^{\mathrm{2}} } \\ $$$$=\frac{{cos}^{\mathrm{3}} {x}−{sin}^{\mathrm{3}} {x}}{{cos}^{\mathrm{2}} {x}\left(\mathrm{1}+{tanx}\right)^{\mathrm{2}} } \\ $$$${at}\:{x}=\frac{\Pi}{\mathrm{4}}\:\:\frac{{dy}}{{dx}}=\mathrm{0} \\ $$$${cosx}>{sinx}\:\:{when}\:{x}<\frac{\Pi}{\mathrm{4}}\:\:\frac{{dy}}{{dx}}=+{ve} \\ $$$${cosx}<{sinx}\:\:{when}\:{x}>\frac{\Pi}{\mathrm{4}}\:\frac{{dy}}{{dx}}=−{ve} \\ $$$${so}\:{sign}\:{change}\:{of}\:\frac{{dy}}{{dx}}\:\:{from}\:+{ve}\:{to}\:−{ve}\: \\ $$$${so}\:{at}\:{x}=\frac{\Pi}{\mathrm{4}}\:\frac{{sinx}}{\mathrm{1}+{tanx}}\:{is}\:{maximum} \\ $$$${and}\:{max}\:{value}\:{is}\:\:\frac{\frac{\mathrm{1}}{\sqrt{\mathrm{2}}}}{\mathrm{1}+\mathrm{1}}=\frac{\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{2}}\:} \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com