Question and Answers Forum

All Questions      Topic List

Trigonometry Questions

Previous in All Question      Next in All Question      

Previous in Trigonometry      Next in Trigonometry      

Question Number 40285 by MJS last updated on 18/Jul/18

solve for 1 period  sin (α/2) =sin 2α  sin (β/3) =sin 3β  cos (γ/2) =cos 2γ  cos (δ/3) =cos 3δ  tan (ε/2) =tan 2ε  tan (ζ/3) =tan 3ζ

solvefor1periodsinα2=sin2αsinβ3=sin3βcosγ2=cos2γcosδ3=cos3δtanϵ2=tan2ϵtanζ3=tan3ζ

Answered by MrW3 last updated on 19/Jul/18

sin (α/2) =sin 2α  ⇒2α+2mπ=(α/2)+2nπ⇒α=((4kπ)/3)  or  ⇒2α+2mπ=(2n+1)π−(α/2)⇒α=((2(2k+1)π)/5)    ⇒solution is:  α=((4kπ)/3) and α=((2(2k+1)π)/5) with k=0,±1,±2,...    one period: 0≤α≤4π  ((4kπ)/3)≤4π⇒k≤3  ((2(2k+1)π)/5)≤4π⇒k≤4.5  ⇒α=0,((2π)/5),((6π)/5),((4π)/3),2π,((8π)/3),((14π)/5),((18π)/5),4π

sinα2=sin2α2α+2mπ=α2+2nπα=4kπ3or2α+2mπ=(2n+1)πα2α=2(2k+1)π5solutionis:α=4kπ3andα=2(2k+1)π5withk=0,±1,±2,...oneperiod:0α4π4kπ34πk32(2k+1)π54πk4.5α=0,2π5,6π5,4π3,2π,8π3,14π5,18π5,4π

Answered by MrW3 last updated on 19/Jul/18

tan (ε/2) =tan 2ε  (ε/2)+mπ=2ε+nπ ⇒ε=((2kπ)/3)  ⇒solution is:  ε=((2kπ)/3)

tanϵ2=tan2ϵϵ2+mπ=2ϵ+nπϵ=2kπ3solutionis:ϵ=2kπ3

Answered by MrW3 last updated on 19/Jul/18

cos (γ/2) =cos 2γ  (γ/2)+2mπ=2nπ±2γ⇒ { ((γ=((4kπ)/3))),((γ=((4kπ)/5))) :}  ⇒solution is:  γ=((4kπ)/3) and γ=((4kπ)/5)

cosγ2=cos2γγ2+2mπ=2nπ±2γ{γ=4kπ3γ=4kπ5solutionis:γ=4kπ3andγ=4kπ5

Terms of Service

Privacy Policy

Contact: info@tinkutara.com