Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 40306 by behi83417@gmail.com last updated on 19/Jul/18

Commented by MJS last updated on 20/Jul/18

can we show the following?  (3/2)≤((x^2 +yz)/(y^2 +z^2 ))+((y^2 +xz)/(x^2 +z^2 ))+((z^2 +xy)/(x^2 +y^2 ))≤((21)/(10))

canweshowthefollowing?32x2+yzy2+z2+y2+xzx2+z2+z2+xyx2+y22110

Commented by MJS last updated on 20/Jul/18

f(x,y,z)=((x^2 +yz)/(y^2 +z^2 ))+((y^2 +xz)/(x^2 +z^2 ))+((z^2 +xy)/(x^2 +y^2 ))  z=−(x+y)  f(x,y,−(x+y))=  =g(x,y)=((3(x^6 +y^6 +3xy(x^4 +y^4 )+8x^2 y^2 (x^2 +y^2 )+11x^3 y^3 ))/((x^2 +y^2 )((x+y)^2 +x^2 )((x+y)^2 +y^2 )))  (d/dx)[g(x,y)]=−((15xy^2 (2(x^8 −y^8 )+9xy(x^6 −y^6 )+16x^2 y^2 (x^4 −y^4 )+14x^3 y^3 (x^2 −y^2 )))/((x^2 +y^2 )^2 ((x+_ y)^2 +x^2 )^2 ((x+y)^2 +y^2 )^2 ))  (d/dx)[g(x,y)]=0 ⇒ x=0 ∨ y=0 ∨  2(x^8 −y^8 )+9xy(x^6 −y^6 )+16x^2 y^2 (x^4 −y^4 )+14x^3 y^3 (x^2 −y^2 )=0  x={−2y; −y; −(y/2); 0; y; −(y/2)(1+i(√3)); −(y/2)(1−i(√3))}  f(x, y, z)={((21)/(10)); (3/2); ((21)/(10)); (3/2); ((21)/(10)); −6; −6}  so these are the minima and maxima of f(x, y, z)

f(x,y,z)=x2+yzy2+z2+y2+xzx2+z2+z2+xyx2+y2z=(x+y)f(x,y,(x+y))==g(x,y)=3(x6+y6+3xy(x4+y4)+8x2y2(x2+y2)+11x3y3)(x2+y2)((x+y)2+x2)((x+y)2+y2)ddx[g(x,y)]=15xy2(2(x8y8)+9xy(x6y6)+16x2y2(x4y4)+14x3y3(x2y2))(x2+y2)2((x+y)2+x2)2((x+y)2+y2)2ddx[g(x,y)]=0x=0y=02(x8y8)+9xy(x6y6)+16x2y2(x4y4)+14x3y3(x2y2)=0x={2y;y;y2;0;y;y2(1+i3);y2(1i3)}f(x,y,z)={2110;32;2110;32;2110;6;6}sothesearetheminimaandmaximaoff(x,y,z)

Answered by tanmay.chaudhury50@gmail.com last updated on 19/Jul/18

k=((xy)/(x^2 +y^2 ))+((yz)/(y^2 +z^2 ))+((xz)/(x^2 +z^2 ))+(z^2 /(x^2 +y^2 ))+(x^2 /(y^2 +z^2 ))+(y^2 /(x^2 +z^2 ))  ((x^2 +y^2 )/2)≥(√(x^2 y^2 ))  ((x^2 +y^2 )/(xy))≥2   so   ((xy)/(x^2 +y^2 ))≤(1/2)  (z^2 /(x^2 +y^2 ))      z=−(x+y)  so z^2 =x^2 +y^2 +2xy  (z^2 /(x^2 +y^2 ))=1+((2xy)/(x^2 +y^2 ))  1+((2xy)/(x^2 +y^2 ))≤2  k≤(1/2)+(1/2)+(1/2)+2+2+2  k≤((15)/2)

k=xyx2+y2+yzy2+z2+xzx2+z2+z2x2+y2+x2y2+z2+y2x2+z2x2+y22x2y2x2+y2xy2soxyx2+y212z2x2+y2z=(x+y)soz2=x2+y2+2xyz2x2+y2=1+2xyx2+y21+2xyx2+y22k12+12+12+2+2+2k152

Answered by math1967 last updated on 19/Jul/18

x,y,z∈R  ∴(x−y)^2 ≥0  (y−z)^2 ≥0,(z−x)^2 ≥0  ∴x^2 +y^2 ≥2xy .......1  From 1  (1/(x^2 +y^2 ))≤(1/(2xy))        ((xy)/(x^2 +y^2 ))≤(1/2) ......(2)    Again x+y+z=0     ⇒x^2 +y^2 +2xy=z^2   ∴x^2 +y^2 +3xy=xy+z^2    From (2) ((3xy)/(x^2 +y^2 ))≤(3/2)     1+((3xy)/(x^2 +y^2 ))≤(5/2)  ((x^2 +y^2 +3xy)/(x^2 +y^2 ))≤(5/2)  ((xy+z^2 )/(x^2 +y^2 ))≤(5/2)    [x^2 +y^2 +3xy=xy+z^2 ]  similarly ((yz+x^2 )/(y^2 +z^2 ))≤(5/2)  ((zx+y^2 )/(z^2 +x^2 ))≤(5/2)  ∴((xy+z^2 )/(x^2 +y^2 )) +((yz+x^2 )/(y^2 +z^2 )) +((zx+y^2 )/(z^2 +x^2 ))≤((15)/2)

x,y,zR(xy)20(yz)20,(zx)20x2+y22xy.......1From11x2+y212xyxyx2+y212......(2)Againx+y+z=0x2+y2+2xy=z2x2+y2+3xy=xy+z2From(2)3xyx2+y2321+3xyx2+y252x2+y2+3xyx2+y252xy+z2x2+y252[x2+y2+3xy=xy+z2]similarlyyz+x2y2+z252zx+y2z2+x252xy+z2x2+y2+yz+x2y2+z2+zx+y2z2+x2152

Terms of Service

Privacy Policy

Contact: info@tinkutara.com