All Questions Topic List
Others Questions
Previous in All Question Next in All Question
Previous in Others Next in Others
Question Number 40352 by scientist last updated on 20/Jul/18
IfA=[4−310]usethefactthatA2=4A−3I2andmathematicalinductiontoproveAn=(3n−1)2A+3−3n2Iifn⩾1
Commented by prof Abdo imad last updated on 20/Jul/18
thecaracteristicpolynomofAispc(A)=det(A−xI)=|4−x−31−x|=−x(4−x)+3=x2−4x+3kayleyhamiltontheoremgiveA2−4A+3I=0⇒A2=4A−3I⇒letprovebyrecurrencethatA2n=32n−12A+3−32n2Itheequalityistrueforn=0A2n+2=A2{32n−12A+3−32n2I}=(4A−3I){32n−12A+3−32n2I}=2(32n−1)A2+2(3−32n)A−332n−12A−33−32n2I=2(32n−1)(4A−3I)+4(3−32n)−332n+32A−33−32n2I=8(32n−1)A−6(32n−1)I+15−732n2A−33−32n2I=16(32n−1)+15−732n2A−12(32n−1)+3(3−32n)2A=9.32n−12A−932n−32I=32n+2−12A+3−32n+22Itherelationistrueatterm(n+1)alsowemustprovebyrecurrencethatA2n+1=32n+1−12A+3−32n+12I.
Terms of Service
Privacy Policy
Contact: info@tinkutara.com