Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 40352 by scientist last updated on 20/Jul/18

If A= [((4     −3)),((1          0)) ]use the fact that   A^2 =4A−3I_2   and mathematical induction to prove    A^n =(((3^n −1))/2)A  +((3−3^n )/2)I  if n≥1

$${If}\:{A}=\begin{bmatrix}{\mathrm{4}\:\:\:\:\:−\mathrm{3}}\\{\mathrm{1}\:\:\:\:\:\:\:\:\:\:\mathrm{0}}\end{bmatrix}{use}\:{the}\:{fact}\:{that}\: \\ $$$${A}^{\mathrm{2}} =\mathrm{4}{A}−\mathrm{3}{I}_{\mathrm{2}} \:\:{and}\:{mathematical}\:{induction}\:{to}\:{prove} \\ $$$$\:\:{A}^{{n}} =\frac{\left(\mathrm{3}^{{n}} −\mathrm{1}\right)}{\mathrm{2}}{A}\:\:+\frac{\mathrm{3}−\mathrm{3}^{{n}} }{\mathrm{2}}{I}\:\:{if}\:{n}\geqslant\mathrm{1} \\ $$

Commented by prof Abdo imad last updated on 20/Jul/18

the caracteristic polynom of A is  p_c (A)=det(A−xI)= determinant (((4−x      −3)),((1              −x)))  =−x(4−x)+3 =x^2  −4x +3  kayley hamilton theorem give   A^2 −4A +3I =0 ⇒A^2  =4A−3I  ⇒  let prove by recurrence that  A^(2n)  =((3^(2n) −1)/2) A +((3−3^(2n) )/2) I    the equality is true for n=0  A^(2n+2) =A^2  {((3^(2n) −1)/2) A +((3−3^(2n) )/2) I}  =(4A−3I){((3^(2n) −1)/2) A +((3−3^(2n) )/2) I}  =2(3^(2n) −1)A^2  +2(3−3^(2n) )A −3((3^(2n) −1)/2) A  −3((3−3^(2n) )/2)I   =2(3^(2n) −1)( 4A−3I) + ((4(3−3^(2n) )−33^(2n)  +3)/2) A  −3((3−3^(2n) )/2) I  =8(3^(2n) −1)A −6(3^(2n) −1)I  + ((15−7 3^(2n) )/2) A  −3 ((3−3^(2n) )/2) I  = ((16(3^(2n) −1)+15−73^(2n) )/2) A  −((12(3^(2n) −1)+3(3−3^(2n) ))/2) A  =((9.3^(2n)  −1)/2) A −((9 3^(2n)  −3)/2) I  =((3^(2n+2) −1)/2) A+((3−3^(2n+2) )/2) I  the relation is true  at term (n+1) also we must prove by recurrence  that  A^(2n+1)   =((3^(2n+1)  −1)/2) A  +((3−3^(2n+1) )/2) I .

$${the}\:{caracteristic}\:{polynom}\:{of}\:{A}\:{is} \\ $$$${p}_{{c}} \left({A}\right)={det}\left({A}−{xI}\right)=\begin{vmatrix}{\mathrm{4}−{x}\:\:\:\:\:\:−\mathrm{3}}\\{\mathrm{1}\:\:\:\:\:\:\:\:\:\:\:\:\:\:−{x}}\end{vmatrix} \\ $$$$=−{x}\left(\mathrm{4}−{x}\right)+\mathrm{3}\:={x}^{\mathrm{2}} \:−\mathrm{4}{x}\:+\mathrm{3} \\ $$$${kayley}\:{hamilton}\:{theorem}\:{give}\: \\ $$$${A}^{\mathrm{2}} −\mathrm{4}{A}\:+\mathrm{3}{I}\:=\mathrm{0}\:\Rightarrow{A}^{\mathrm{2}} \:=\mathrm{4}{A}−\mathrm{3}{I}\:\:\Rightarrow \\ $$$${let}\:{prove}\:{by}\:{recurrence}\:{that} \\ $$$${A}^{\mathrm{2}{n}} \:=\frac{\mathrm{3}^{\mathrm{2}{n}} −\mathrm{1}}{\mathrm{2}}\:{A}\:+\frac{\mathrm{3}−\mathrm{3}^{\mathrm{2}{n}} }{\mathrm{2}}\:{I}\:\: \\ $$$${the}\:{equality}\:{is}\:{true}\:{for}\:{n}=\mathrm{0} \\ $$$${A}^{\mathrm{2}{n}+\mathrm{2}} ={A}^{\mathrm{2}} \:\left\{\frac{\mathrm{3}^{\mathrm{2}{n}} −\mathrm{1}}{\mathrm{2}}\:{A}\:+\frac{\mathrm{3}−\mathrm{3}^{\mathrm{2}{n}} }{\mathrm{2}}\:{I}\right\} \\ $$$$=\left(\mathrm{4}{A}−\mathrm{3}{I}\right)\left\{\frac{\mathrm{3}^{\mathrm{2}{n}} −\mathrm{1}}{\mathrm{2}}\:{A}\:+\frac{\mathrm{3}−\mathrm{3}^{\mathrm{2}{n}} }{\mathrm{2}}\:{I}\right\} \\ $$$$=\mathrm{2}\left(\mathrm{3}^{\mathrm{2}{n}} −\mathrm{1}\right){A}^{\mathrm{2}} \:+\mathrm{2}\left(\mathrm{3}−\mathrm{3}^{\mathrm{2}{n}} \right){A}\:−\mathrm{3}\frac{\mathrm{3}^{\mathrm{2}{n}} −\mathrm{1}}{\mathrm{2}}\:{A} \\ $$$$−\mathrm{3}\frac{\mathrm{3}−\mathrm{3}^{\mathrm{2}{n}} }{\mathrm{2}}{I}\: \\ $$$$=\mathrm{2}\left(\mathrm{3}^{\mathrm{2}{n}} −\mathrm{1}\right)\left(\:\mathrm{4}{A}−\mathrm{3}{I}\right)\:+\:\frac{\mathrm{4}\left(\mathrm{3}−\mathrm{3}^{\mathrm{2}{n}} \right)−\mathrm{33}^{\mathrm{2}{n}} \:+\mathrm{3}}{\mathrm{2}}\:{A} \\ $$$$−\mathrm{3}\frac{\mathrm{3}−\mathrm{3}^{\mathrm{2}{n}} }{\mathrm{2}}\:{I} \\ $$$$=\mathrm{8}\left(\mathrm{3}^{\mathrm{2}{n}} −\mathrm{1}\right){A}\:−\mathrm{6}\left(\mathrm{3}^{\mathrm{2}{n}} −\mathrm{1}\right){I}\:\:+\:\frac{\mathrm{15}−\mathrm{7}\:\mathrm{3}^{\mathrm{2}{n}} }{\mathrm{2}}\:{A} \\ $$$$−\mathrm{3}\:\frac{\mathrm{3}−\mathrm{3}^{\mathrm{2}{n}} }{\mathrm{2}}\:{I} \\ $$$$=\:\frac{\mathrm{16}\left(\mathrm{3}^{\mathrm{2}{n}} −\mathrm{1}\right)+\mathrm{15}−\mathrm{73}^{\mathrm{2}{n}} }{\mathrm{2}}\:{A}\:\:−\frac{\mathrm{12}\left(\mathrm{3}^{\mathrm{2}{n}} −\mathrm{1}\right)+\mathrm{3}\left(\mathrm{3}−\mathrm{3}^{\mathrm{2}{n}} \right)}{\mathrm{2}}\:{A} \\ $$$$=\frac{\mathrm{9}.\mathrm{3}^{\mathrm{2}{n}} \:−\mathrm{1}}{\mathrm{2}}\:{A}\:−\frac{\mathrm{9}\:\mathrm{3}^{\mathrm{2}{n}} \:−\mathrm{3}}{\mathrm{2}}\:{I} \\ $$$$=\frac{\mathrm{3}^{\mathrm{2}{n}+\mathrm{2}} −\mathrm{1}}{\mathrm{2}}\:{A}+\frac{\mathrm{3}−\mathrm{3}^{\mathrm{2}{n}+\mathrm{2}} }{\mathrm{2}}\:{I}\:\:{the}\:{relation}\:{is}\:{true} \\ $$$${at}\:{term}\:\left({n}+\mathrm{1}\right)\:{also}\:{we}\:{must}\:{prove}\:{by}\:{recurrence} \\ $$$${that} \\ $$$${A}^{\mathrm{2}{n}+\mathrm{1}} \:\:=\frac{\mathrm{3}^{\mathrm{2}{n}+\mathrm{1}} \:−\mathrm{1}}{\mathrm{2}}\:{A}\:\:+\frac{\mathrm{3}−\mathrm{3}^{\mathrm{2}{n}+\mathrm{1}} }{\mathrm{2}}\:{I}\:. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com