Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 4036 by Rasheed Soomro last updated on 27/Dec/15

Twin of Q#3943  Three circles are drawn in a plane  in such a way that a closed region  is produced which is not included  in any of the circles. Determine the  area of this region.  Circles ∣ Radii ∣ Centers _(−)         A               r_1              C_1                B              r_2              C_2          C              r_3               C_3   Conditions:       r_1 +r_2 ≥C_1 C_2        r_2 +r_3 ≥C_2 C_3        r_3 +r_1 ≥C_3 C_1

$$\mathrm{Twin}\:\mathrm{of}\:\mathrm{Q}#\mathrm{3943} \\ $$$$\mathrm{Three}\:\mathrm{circles}\:\mathrm{are}\:\mathrm{drawn}\:\mathrm{in}\:\mathrm{a}\:\mathrm{plane} \\ $$$$\mathrm{in}\:\mathrm{such}\:\mathrm{a}\:\mathrm{way}\:\mathrm{that}\:\mathrm{a}\:\mathrm{closed}\:\mathrm{region} \\ $$$$\mathrm{is}\:\mathrm{produced}\:\mathrm{which}\:\mathrm{is}\:\mathrm{not}\:\mathrm{included} \\ $$$$\mathrm{in}\:\mathrm{any}\:\mathrm{of}\:\mathrm{the}\:\mathrm{circles}.\:\mathrm{Determine}\:\mathrm{the} \\ $$$$\mathrm{area}\:\mathrm{of}\:\mathrm{this}\:\mathrm{region}. \\ $$$$\underset{−} {\mathrm{Circles}\:\mid\:\mathrm{Radii}\:\mid\:\mathrm{Centers}\:} \\ $$$$\:\:\:\:\:\:\mathrm{A}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\boldsymbol{\mathrm{r}}_{\mathrm{1}} \:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{C}_{\mathrm{1}} \:\:\:\:\:\: \\ $$$$\:\:\:\:\:\:\:\mathrm{B}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\boldsymbol{\mathrm{r}}_{\mathrm{2}} \:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{C}_{\mathrm{2}} \\ $$$$\:\:\:\:\:\:\:\mathrm{C}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\boldsymbol{\mathrm{r}}_{\mathrm{3}} \:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{C}_{\mathrm{3}} \\ $$$$\mathrm{Conditions}: \\ $$$$\:\:\:\:\:\boldsymbol{\mathrm{r}}_{\mathrm{1}} +\boldsymbol{\mathrm{r}}_{\mathrm{2}} \geqslant\mathrm{C}_{\mathrm{1}} \mathrm{C}_{\mathrm{2}} \\ $$$$\:\:\:\:\:\boldsymbol{\mathrm{r}}_{\mathrm{2}} +\boldsymbol{\mathrm{r}}_{\mathrm{3}} \geqslant\mathrm{C}_{\mathrm{2}} \mathrm{C}_{\mathrm{3}} \\ $$$$\:\:\:\:\:\boldsymbol{\mathrm{r}}_{\mathrm{3}} +\boldsymbol{\mathrm{r}}_{\mathrm{1}} \geqslant\mathrm{C}_{\mathrm{3}} \mathrm{C}_{\mathrm{1}} \\ $$

Commented by Yozzii last updated on 27/Dec/15

Commented by Yozzii last updated on 27/Dec/15

Area of region GHI is required.

$${Area}\:{of}\:{region}\:{GHI}\:{is}\:{required}. \\ $$

Commented by Rasheed Soomro last updated on 27/Dec/15

Yes. Exactly!  In other cases two or  all the three  circles are tangent to one another.

$$\mathrm{Yes}.\:\mathrm{Exactly}! \\ $$$$\mathrm{In}\:\mathrm{other}\:\mathrm{cases}\:\mathrm{two}\:\mathrm{or}\:\:\mathrm{all}\:\mathrm{the}\:\mathrm{three} \\ $$$$\mathrm{circles}\:\mathrm{are}\:\mathrm{tangent}\:\mathrm{to}\:\mathrm{one}\:\mathrm{another}. \\ $$

Commented by Yozzii last updated on 27/Dec/15

Commented by Yozzii last updated on 27/Dec/15

Disregard the explicit measurements  of angles given in the diagram.   I only required the image to delineate  the important angles for the calculation.

$${Disregard}\:{the}\:{explicit}\:{measurements} \\ $$$${of}\:{angles}\:{given}\:{in}\:{the}\:{diagram}.\: \\ $$$${I}\:{only}\:{required}\:{the}\:{image}\:{to}\:{delineate} \\ $$$${the}\:{important}\:{angles}\:{for}\:{the}\:{calculation}. \\ $$

Commented by Yozzii last updated on 27/Dec/15

Let A_1  be the area of △AEC. By the  question we know the lengths AE,EC  & CA. So, Heron′s formula could  be used to find A_1 .   A_1 =(√(s(s−CA)(s−AE)(s−EC)))  s=((AE+EC+CA)/2).  Let θ_1 =∠ACE,θ_2 =∠CEA and θ_3 =∠EAC.  By cosine rule   AE^2 =EC^2 +CA^2 −2(EC)(CA)cosθ_1   ⇒θ_1 =cos^(−1) {((EC^2 +CA^2 −AE^2 )/(2(EC)(CA)))}.  In like fashion, θ_2  can be found  and θ_3 =π−θ_1 −θ_2 .  Let r_1 ,r_2 ,r_3  be the radii of the circles  with centres C,E and A respectively.  The area A_2  of the sector MCL (from diagram)  is given by A_2 =(1/2)r_1 ^2 θ_1 . Similarly,  the area A_3  of the sector OEN is A_3 =(1/2)r_2 ^2 θ_2   and the area A_4  of the sector KAJ is  A_4 =(1/2)r_3 ^2 θ_3 . Now, the value of   s=Σ_(i=2) ^4 A_i  includes duplication of   pairwise overlapping of circles. To  find the correct value of s to subtract  from A_1  to give the required area, work  s by parts. Starting with A_2 , A_2 +A_3   considers the overlap of circles C and E  two times. ⇒suitable area,  s_1 =A_2 +A_3 −Area(LTN).  Next, A_2 +A_3 +A_4  considers the   overlap between circles A and E, and also A and C,twice.  So, truly s=Σ_(r=2) ^4 A_r −Area(LTN)−Area(OKR)−Area(MBJ).  Mr. Jain′s answer to question 3877 can help  you find Areas LTN,OKR andMBJ,  once you half each result for area   found using his method directly.    Afterwards,   Area(RBT)=A_1 −s.

$${Let}\:{A}_{\mathrm{1}} \:{be}\:{the}\:{area}\:{of}\:\bigtriangleup{AEC}.\:{By}\:{the} \\ $$$${question}\:{we}\:{know}\:{the}\:{lengths}\:{AE},{EC} \\ $$$$\&\:{CA}.\:{So},\:{Heron}'{s}\:{formula}\:{could} \\ $$$${be}\:{used}\:{to}\:{find}\:{A}_{\mathrm{1}} .\: \\ $$$${A}_{\mathrm{1}} =\sqrt{{s}\left({s}−{CA}\right)\left({s}−{AE}\right)\left({s}−{EC}\right)} \\ $$$${s}=\frac{{AE}+{EC}+{CA}}{\mathrm{2}}. \\ $$$${Let}\:\theta_{\mathrm{1}} =\angle{ACE},\theta_{\mathrm{2}} =\angle{CEA}\:{and}\:\theta_{\mathrm{3}} =\angle{EAC}. \\ $$$${By}\:{cosine}\:{rule}\: \\ $$$${AE}^{\mathrm{2}} ={EC}^{\mathrm{2}} +{CA}^{\mathrm{2}} −\mathrm{2}\left({EC}\right)\left({CA}\right){cos}\theta_{\mathrm{1}} \\ $$$$\Rightarrow\theta_{\mathrm{1}} ={cos}^{−\mathrm{1}} \left\{\frac{{EC}^{\mathrm{2}} +{CA}^{\mathrm{2}} −{AE}^{\mathrm{2}} }{\mathrm{2}\left({EC}\right)\left({CA}\right)}\right\}. \\ $$$${In}\:{like}\:{fashion},\:\theta_{\mathrm{2}} \:{can}\:{be}\:{found} \\ $$$${and}\:\theta_{\mathrm{3}} =\pi−\theta_{\mathrm{1}} −\theta_{\mathrm{2}} . \\ $$$${Let}\:{r}_{\mathrm{1}} ,{r}_{\mathrm{2}} ,{r}_{\mathrm{3}} \:{be}\:{the}\:{radii}\:{of}\:{the}\:{circles} \\ $$$${with}\:{centres}\:{C},{E}\:{and}\:{A}\:{respectively}. \\ $$$${The}\:{area}\:{A}_{\mathrm{2}} \:{of}\:{the}\:{sector}\:{MCL}\:\left({from}\:{diagram}\right) \\ $$$${is}\:{given}\:{by}\:{A}_{\mathrm{2}} =\frac{\mathrm{1}}{\mathrm{2}}{r}_{\mathrm{1}} ^{\mathrm{2}} \theta_{\mathrm{1}} .\:{Similarly}, \\ $$$${the}\:{area}\:{A}_{\mathrm{3}} \:{of}\:{the}\:{sector}\:{OEN}\:{is}\:{A}_{\mathrm{3}} =\frac{\mathrm{1}}{\mathrm{2}}{r}_{\mathrm{2}} ^{\mathrm{2}} \theta_{\mathrm{2}} \\ $$$${and}\:{the}\:{area}\:{A}_{\mathrm{4}} \:{of}\:{the}\:{sector}\:{KAJ}\:{is} \\ $$$${A}_{\mathrm{4}} =\frac{\mathrm{1}}{\mathrm{2}}{r}_{\mathrm{3}} ^{\mathrm{2}} \theta_{\mathrm{3}} .\:{Now},\:{the}\:{value}\:{of}\: \\ $$$${s}=\underset{{i}=\mathrm{2}} {\overset{\mathrm{4}} {\sum}}{A}_{{i}} \:{includes}\:{duplication}\:{of}\: \\ $$$${pairwise}\:{overlapping}\:{of}\:{circles}.\:{To} \\ $$$${find}\:{the}\:{correct}\:{value}\:{of}\:{s}\:{to}\:{subtract} \\ $$$${from}\:{A}_{\mathrm{1}} \:{to}\:{give}\:{the}\:{required}\:{area},\:{work} \\ $$$${s}\:{by}\:{parts}.\:{Starting}\:{with}\:{A}_{\mathrm{2}} ,\:{A}_{\mathrm{2}} +{A}_{\mathrm{3}} \\ $$$${considers}\:{the}\:{overlap}\:{of}\:{circles}\:{C}\:{and}\:{E} \\ $$$${two}\:{times}.\:\Rightarrow{suitable}\:{area}, \\ $$$${s}_{\mathrm{1}} ={A}_{\mathrm{2}} +{A}_{\mathrm{3}} −{Area}\left({LTN}\right). \\ $$$${Next},\:{A}_{\mathrm{2}} +{A}_{\mathrm{3}} +{A}_{\mathrm{4}} \:{considers}\:{the}\: \\ $$$${overlap}\:{between}\:{circles}\:{A}\:{and}\:{E},\:{and}\:{also}\:{A}\:{and}\:{C},{twice}. \\ $$$${So},\:{truly}\:{s}=\underset{{r}=\mathrm{2}} {\overset{\mathrm{4}} {\sum}}{A}_{{r}} −{Area}\left({LTN}\right)−{Area}\left({OKR}\right)−{Area}\left({MBJ}\right). \\ $$$${Mr}.\:{Jain}'{s}\:{answer}\:{to}\:{question}\:\mathrm{3877}\:{can}\:{help} \\ $$$${you}\:{find}\:{Areas}\:{LTN},{OKR}\:{andMBJ}, \\ $$$${once}\:{you}\:{half}\:{each}\:{result}\:{for}\:{area}\: \\ $$$${found}\:{using}\:{his}\:{method}\:{directly}. \\ $$$$ \\ $$$${Afterwards},\: \\ $$$${Area}\left({RBT}\right)={A}_{\mathrm{1}} −{s}. \\ $$

Commented by Rasheed Soomro last updated on 27/Dec/15

                                                     GREAT !                      YOU   HAVE DONE  SUCCESSFULLY!

$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathbb{G}\mathcal{REA}\mathbb{T}\:! \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathbb{Y}\mathcal{OU}\:\:\:\mathbb{H}\mathcal{AVE}\:\mathbb{D}\mathcal{ONE}\:\:\mathbb{S}\mathcal{UCCESSFULLY}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com