Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 40375 by behi83417@gmail.com last updated on 21/Jul/18

Answered by MJS last updated on 21/Jul/18

xyz(x+y+z)=1 ⇒ z=−((x+y)/2)±((√(xy(x+y)^2 +4))/(2(√(xy)))) ⇒  ⇒ p(x, y, z)=(((x+y)(x^2 y^2 +1))/(xy))  after drawing lots of graphs I cane to the  conclusion that this has a minimum with  y=x ⇒ z=x±((√(x^4 +1))/x) ⇒ p(x, y, z)=((2(x^4 +1))/x)  p′(x)=((2(3x^4 −1))/x^2 )=0 ⇒ x=y=z=((√(3(√3)))/3)≈.759836  p(((√(3(√3)))/3), ((√(3(√3)))/3), ((√(3(√3)))/3))=((8(3)^(1/4) )/3)≈3.50953

xyz(x+y+z)=1z=x+y2±xy(x+y)2+42xyp(x,y,z)=(x+y)(x2y2+1)xyafterdrawinglotsofgraphsIcanetotheconclusionthatthishasaminimumwithy=xz=x±x4+1xp(x,y,z)=2(x4+1)xp(x)=2(3x41)x2=0x=y=z=333.759836p(333,333,333)=83433.50953

Commented by behi83417@gmail.com last updated on 21/Jul/18

thank you so much dear.

thankyousomuchdear.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com